Emission Mössbauer Spectroscopy at ISOLDE/CERN

Slides:



Advertisements
Similar presentations
169 Tm Mössbauer Spectroscopy J.M. Cadogan Department of Physics and Astronomy University of Manitoba Winnipeg, Manitoba, R3T 2N2 Canada
Advertisements

Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
IAEA CRP: Ion Beam Modification of Insulators RCM, Dec , 2007, FNRC, Uni. Chiang Mai, Thailand Study of the formation of ferro-, para- and superpara-
55. Jahrestagung der ÖPG, September 2005 Pionischer Wasserstoff: Präzisionsmessungen zur starken Wechselwirkung J. Marton Stefan Meyer Institut der ÖAW.
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
Hyperfine Studies of Lithium using Saturated Absorption Spectroscopy Tory Carr Advisor: Dr. Alex Cronin.
School of Physics and Astronomy, University of Nottingham, UK
6-1 RFSS: Lecture 6 Gamma Decay Part 2 Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition.
Corey Thompson Technique Presentation 03/21/2011
Mossbauer Spectroscopy
Mössbauer spectroscopy References: J.P. Adloff, R. Guillaumont: Fundamentals of Radiochemistry, CRC Press, Boca Raton, 1993.
57 Mn Mössbauer collaboration at ISOLDE/CERN Emission Mössbauer spectroscopy of advanced materials for opto- and nano- electronics Spokepersons: Haraldur.
Structures and shapes from ground state properties 1.Nuclear properties from laser spectroscopy 2.Status of laser measurements of moments and radii 3.New.
Yb valence in YbMn 2 (Si,Ge) 2 J.M. Cadogan and D.H. Ryan Department of Physics and Astronomy, University of Manitoba Winnipeg, MB, R3T 2N2, Canada
Depth Profiling with Low-Energy Nuclear Resonances H.-W. Becker, IAEA May 2011 CRP: Reference Database for Particle Induced Gamma-ray Emission (PIGE) Ruhr-University.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,
Applications of Mössbauer Spectroscopy at WITS and ISOLDE/CERN by Professor Deena Naidoo Wits-NECSA Workshop September 2015.
High Resolution optical spectroscopy in isotopically-pure Si using radioactive isotopes: towards a re-evaluation of deep centres Mike Thewalt 1, Karl Johnston.
Polarized Proton Solid Target for RI beam experiments M. Hatano University of Tokyo H. Sakai University of Tokyo T. Uesaka CNS, University of Tokyo S.
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
HFI/NQI 2010 (September 14, 2010, Geneva) Investigations on Thin Fe Films and Heusler Alloy Films Using Synchrotron-Radiation-Based Mössbauer Spectroscopy.
Direct identification of interstitial Mn in Ga 1-x Mn x As and evidence of its high thermal stability Lino Pereira 1, 2, 3 U. Wahl 2, J. G. Correia 2,,
INTERSTITIAL DEFECT REACTIONS IN P-TYPE SILICON IRRADIATED AT DIFFERENT TEMPERATURES L.F. Makarenko*, S.B. Lastovski**, L.I. Murin**, M. Moll*** * Belarusian.
Burnaby - Dublin - Freiberg – Manchester – Saarbrücken - ISOLDE Collaboration Spokesperson: M. Deicher Contact person: K. Johnston.
Magnetic and structural properties of manganese doped (Al,Ga)N studied with Emission Mössbauer Spectroscopy Spokespersons: Alberta Bonanni Haraldur Páll.
Donor-Acceptor Complexes in ZnO
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers at Duquesne University.
PAC study of the magnetic and structural first-order phase transition in MnAs J. N. Gonçalves 1 V. S. Amaral 1, J. G. Correia 2, A. M. L. Lopes 3 H. Haas.
Spectral Diffusion (in Rare-Earth-Doped Materials) Aislinn Daniels Spectrum Lab Seminar Fall 2015 Spectrum Lab Montana State University.
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
1 Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Sacavém, Portugal 2 Instituut voor Kern- en Stralingsfysica.
Lattice location studies of the “anti-site” impurities As and Sb in ZnO and GaN Motivation 73 As in ZnO 73 As in GaN 124 Sb in GaN Conclusions U. Wahl.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Fighting f-factors and implantation damage in emission Mössbauer spectroscopy Haraldur Páll Gunnlaugsson* The Mössbauer collaboration at ISOLDE CERN The.
Boron and Phosphorus Implantation Induced Electrically Active Defects in p-type Silicon Jayantha Senawiratne 1,a, Jeffery S. Cites 1, James G. Couillard.
1 WORKSHOP AND USERS February 2007 Lattice site location of implanted Fe in SrTiO 3 and lattice damage recovery studies A. C. Marques 1,4 *, U. Wahl 1,2,
Physics around ISOLDE K. Riisager on behalf on Danish ISOLDE users RECFA meeting, Copenhagen, May
Emission Mössbauer spectroscopy of advanced materials for opto- and nano-electronics Spokepersons: Haraldur Páll Gunnlaugsson Sveinn Ólafsson Contact person:
Mossbauer spectroscopy
Particle Size Dependence of Magnetic Properties in Cobalt Ferrite Nanoparticles Jun Hee Cho 1, Sang Gil Ko 1, Yang kyu Ahn 1, Eun Jung Choi 2 * 1 Department.
University of Ioannina
Solid State and bio-physics at ISOLDE
We ask for 4 new shifts (to be combined with 2 shifts left for IS386 from 2005) of radioactive beam of 229Ra in order to search for the alpha decay branch.
Characterization of He implanted Eurofer97
In-source laser spectroscopy of mercury isotopes (P-424)
Emission Channeling with Short-Lived Isotopes: lattice location of impurities in semiconductors and oxides L.M.C. Pereira1 , L. Amorim1, J.P. Araújo4,
P. Alexeev1, H. -C. Wille1, O. Leupold1, I. Sergueev1, M
Mӧssbauer study of Y3Al5O12 (YAG), Y3Fe5O12 (YIG) and Gd3Ga5O12 (GGG) single crystal garnets following dilute implantation of 57Mn+. P. B. Krastev,
Mössbauer studies of dilute magnetic semiconductors
Physics coordinator report: Overview of 2015
Ion beam analysis of materials with MeV beams at the Ruhr University Bochum Ruhr-Uni-Bochum Contribution to the ISOLDE workshop, Dec, 4th 2017, Hans-Werner.
Laser assisted decay spectroscopy at the cris beam line at
VITO Laser Polarization Setup and bio β-NMR
ISOLDE Workshop and Users Meeting 2017
Hyperfine interaction studies in Manganites
Magdalena Kowalska, CERN PH-SME-IS
آزمايشگاه فناوري نانو کفا آزمايشگاه فناوري نانو کفا
CHEM 312: Lecture 6 Part 2 Gamma Decay
Inverse Photoemission Spectroscopy
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Study of the resonance states in 27P by using
Experimental determination of isospin mixing in nuclear states;
Metastability of the boron-vacancy complex (C center) in silicon: A hybrid functional study Cecil Ouma and Walter Meyer Department of Physics, University.
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Magdalena Kowalska, CERN PH-SME-IS
Ion-beam, photon and hyperfine methods in nano-structured materials
Presentation transcript:

Emission Mössbauer Spectroscopy at ISOLDE/CERN Torben Esmann Mølholt ISOLDE Seminar, 25. Nov. 2015

Outline Experimental setup at ISOLDE Brief on the Mössbauer spectroscopy technique Examples and Results Future/ongoing measurements

Acknowledgements The Mössbauer collaboration at ISOLDE/CERN, >30 active members with new members (2014) from China, Russia, Bulgaria, Austria, Spain: Four experiments (IS-501, IS-576, IS-578, I-161) Existing members New members 2014

Emission Mössbauer Spectroscopy at ISOLDE/CERN http://e-ms.web.cern.ch/ GLM (GPS) LA1-2 (HRS)

119In RILIS 2015 2014 57Mn RILIS 119In 57Mn RILIS 15 μSi/h -

Mössbauer Experimental setup Incoming 60 keV beam Implantation chamber Mössbauer drive with resonance detector Sample Container: 25 mbar acetone Faraday cup Be window Intensity (~1×108 atoms/s) High statistics spectrum (5 – 10 min.) On-line (short lived) Collections for Off-line (long lived) Hours - days

Mössbauer Experimental setup Sample holder Measurements at different emission angles Applied magnetic field (Bext ≤ 0.6 T) Temperature range 90 – 700 K

Mössbauer Experimental setup Sample holder Quenching: Implant at high temperature Measure at low temperature (off-line)

Mössbauer Experimental setup Resonance detector PPAD: Parallel Plate Avalanche Detector - Single line resonance detector. 0.1 cps (~0.1 µCi) – 50k cps (~500 mCi) - G. Weyer, Mössbauer Eff. Meth., 10 (1976) 301

Mössbauer spectroscopy technique

Emission Mössbauer spectroscopy 40-60 keV Ion-implantation of Mössbauer Probe Emission Mössbauer spectroscopy Measurement of spectrum γ Source/sample: ion-implanted crystal – v + v Absorber/detector: Single line resonance detector Emission Mössbauer spectrum Counts +10 –10 Velocity (mm/s) Tilskrives ekstra energi pga. Doppler-effekten. Skanner efter resonans Intensi. s. fun. Af hast. Mössbauer spectroscopy: High spectral resolution v = ±10 mm/s (Doppler) E = ±4.8×10-7 eV

Emission Mössbauer spectroscopy Measure hyperfine interactions Important info on an atomic scale: Valence/Spin state (line position, d) Site symmetry (doublet?) Magnetic interactions (Sextet) Binding properties Relaxation effects Diffusion ….. Mössbauer transition Hyperfine interactions DE = 10-8 eV Dilute Probe: Below 10-3 at.% 1×1018 atoms/cm3

The resolution of Mössbauer spectroscopy can measure hyperfine interactions Cubic: Single line Velocity [mm/s] Relative emission Position of spectral line Valence state Non-cubic: Split line Velocity [mm/s] Relative emission Quadropol splitting  Cubic?

57Fe emission Mössbauer spectroscopy Valence/Spin state Spectral line position, Isomer shift, d Shielding ↑ r(0) ↓, d ↑ 1 mm/s = 48 neV

57Fe emission Mössbauer spectroscopy Magnetic hf. splitting of 57Fe  Sextet m If the spin is stable for longer than 140 ns – Sextet is observed Ferromagnetic material Slow relaxing paramagnetism (not only one sextet) I 1 2 3 4 5 6 +3/2 57*Fe 14.4 keV +1/2 I = 3 /2 -1/2 -3/2 57Fe -1/2 I = 1 /2 +1/2 Relative velocity Relative emission - v + v 1 2 3 6 4 5 57*Fe

Bext DmI = 0 g Sample 3 4 1 1 4 3 3 0 1 1 0 3 Magnetic order Angular dependence in Bext Magnetic order Bext DmI = 0 g Sample Individual line ratios depend on the angle between Bext and the γ direction Relative line ratios: 3:4:1 (90º)  3:0:1 (0º) 3 4 1 1 4 3 3 0 1 1 0 3

Paramagnetism (slow relaxation) Angular dependence in Bext (same as ordered, but Kramer doublets) 57*Fe Paramagnetism (slow relaxation) DmI = 0 from SZ = ±3/2 Bext g Sample SZ = ±5/2 Individual line ratios depend on the angle between Bext and the γ direction SZ = ±3/2 SZ = ±1/2 Relative line ratios: 3:4:1 (90º)  3:0:1 (0º)

Sample of interest (Crystal, solid) - Implant Radioactive probes / impurities - Decay  Probe the crystal - The radioactive decay gives information about the probe sites  SPECTRUM (data) - Analysis of Spectra (data)  Crystal properties

Ion-implantation Beam Explain the facts: implantation, high dilution of Mn, defect production around probe: concentration in the percent range (from old Berlin experiments) and theory, explain recoil energy after implantation, explain different lattice sites

Examples and results

Interstitial in MgO Quenching setup: Reduction of FeD (damage) “More clear” FeI line Low statistics spectrum (no FeMag) T. E. Mølholt et al. J. Appl. Phys. 115, 023508 (2014)

Magnetic identification Magnetic structure originate from Kramers doublets is clearly observed. DmI = 0 from SZ = ±3/2 NO ordered magnetism Slow relaxing Paramagnetism  - T. E Mølholt, Paramagnetism in ion-implanted oxides (2012) ISBN: 978-9935-9069-5-3 - H. P. Gunnlaugsson et al. , Appl. Phys. Lett. 97 (2010) 142501

Paramagnetic relaxation of dilute 57Fe? Know it is of paramagnetic origin:  Examine temperature dependence of the paramagnetic structure Bext = 0 T:  More complex magnetic sextet structure

ZnO: Bext = 0 T Temperature ↑ : Broadening ↑ simulation Blume M. and Tjon J.A.: Phys. Rev. 165, 446 (1968) - T. E Mølholt et al. Physica Scripta, T148 (2012) 014006 - T. E Mølholt et al. Hyp. Int. 197(2010) 89-94

Spin-lattice relaxation rates in studied oxides T. E Mølholt et al. Physica Scripta, T148 (2012) 014006 T. E Mølholt et al. Hyp. Int. 197 (2010) 89-94 H.P. Gunnlaugsson et al. Hyp. Int. 198 (2010) 5-14 R. Mantovan et. al. Advan. Elec. Mat. 1 (2015) 1400039 Theory Direct process 2 phonon T 1 T 5-9 T 2 ~20 K ~qD/3 Log(rate) Log(T) T 2 T 9 θD/3 MgO: ~ 730 K  α-Al2O3: ~ 1050 K  ZnO: ~ 300 – 700 K  qD

On-going and future Mössbauer studies at ISOLDE Make use of more ISOLDE beams On-line Off-line (longer lived Mossbauer isotopes), b508 Please see Talk at the ISOLDE Workshop by Haraldur Páll Gunnlaugsson: - Friday 4th Dec. 09:30

151Eu Mössbauer preliminary results June/July 2015: 151Dy-beam, T½~124d (151Gd) RE doping: manipulate optical properties in semiconductors Samples made in minutes Measurements of ~20 samples ongoing preliminary results F.E. Wagner et. al., Physics Letters A 42, 7, (1973) 483

Cu sample. 151Eu Measured at RT As implanted After annealing: Implantation related sites Damage (not perfect lattice) Vacancies Interstitial Substitutional site As implanted After annealing: 350°C for 30 min.

197Au Mössbauer November 2015: 197Hg beam, T½~64h Test for Bio-physics (INTC-2015-008, I-161). Low Hg-yields to LA2 (sample made in several hours): → No bio-physics. But proof of feasibility/calibration.

Emission Mössbauer at ISOLDE ! The ISOLDE isotope beams are our tools for Mössbauer studies ! Usage of additional isotopes for extended studies and possibilities

Thanks for your attention Conclusions Mössbauer is a unique atomic-scale measurements of electronic, magnetic, and structural properties within materials. ISOLDE is the perfect tool to create and study doping and defects in materials. Showed some specific results. Interstitial Fe in MgO. Paramagnetism is oxides. Expanding the isotopes used for eMS at ISOLDE. Further doping possibilities. Bio-physics. Thanks for your attention