Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Single beam element
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Beam composed by several elements
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Simply supported beam with different discretizations: (a) n = 1, (b) n = 3, and (c)n = 5, 7, 9, …
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Normalized deflections for different discretizations
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Single beam element, internal forces
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Linear tests. Convergence of deflection at the load location.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Nonlinear test, from Ref. [28]
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Nonlinear test. Load–deflection curves.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Nonlinear test. Convergence of deflections for PL2/EI = 10.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Nonlinear test: Z-shaped cantilever
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Nonlinear test: Z-shaped cantilever. Load versus tip vertical deflection.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Spinning beam. Endpoint deflection versus time, 40 elements.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Spinning beam. Convergence of maximum endpoint deflection, Δt = 0.01 s.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Flexible slider–crank. Deflection of the flexible rod midpoint.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Flexible slider–crank. Convergence of midpoint deflection during four turns, Δt = 0.0001 s.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Flexible spatial double pendulum, from Ref. [31]
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Flexible double pendulum. X-displacement of point B versus time with ten elements, integrated with trapezoidal rule, Δt = 0.001 s.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Flexible double pendulum. X-displacement of point B versus time with ten elements, E = 0.06 GPa, Δt = 0.001 s.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved. From: A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics J. Comput. Nonlinear Dynam. 2017;12(5):051006-051006-8. doi:10.1115/1.4036116 Figure Legend: Flexible double pendulum. Convergence of the X-displacement of point B, E = 0.06 GPa, Δt = 0.001 s.