Methods S2. Detailed pDOE vector schematics and cloning strategies.

Slides:



Advertisements
Similar presentations
Uses of Cloned Genes sequencing reagents (eg, probes) protein production insufficient natural quantities modify/mutagenesis library screening Expression.
Advertisements

Recombinant DNA prepare foreign (target) DNA prepare vector (host)
Design and Testing of a Bacteriological Timer Device Herman Armstrong Morgan Schiermeier Rachel Klapper Jackie Schneider.
DNA Manipulation in Synthetic Biology. DNA structure Covalent bondsHydrogen bonds.
RNA and Nucleic Acid Reactions C483 Spring Which is not a difference between RNA and DNA? A) RNA is more prone to basic aqueous hydrolysis. B)
Module 4 – Mutational analysis of the lac operon Week 1.
Cloning and rDNA (I) Dr. Abdulaziz Almalik National center for Biotechnology King Abdulaziz City for Science and Technology Office: 228-Building 17 (F)
PLZ-htrA forward 6.0 kb aphA repA copG family NotI SalI htrA EcoRI pLZ-htrA reverse 6.0 kb aphA repA copG family NotI SalI EcoRI htrA Figure S1 A DNA fragment.
ADAPTERS & LINKERS for dna cloning
DNA aSsEmBlY tEcHnIqUes Design and construct novel biological organisms programmed by genetic circuits using standardized biological parts called BioBricks.
Recombinant DNA Introduction to Recombinant DNA technology
Restriction Mapping.
Restriction Endonucleases BIO450. Restriction Enzymes Enzymatic Activity Biological Role Diversity Recognition Sequence Digestion Conditions Typical Reaction.
Mutagenesis Methods Lily Peterson April 5 th, 2010.
Primer design for PCR cloning special case for when the insert is to be cloned PCR also used for diagnostic (is gene present) PCR also used to quantitate.
G.tigrina Hox gene DthoxC insertion into prokaryote E.coli – by UNIamCloning.
Figure S1. Sequence alignment of yeast and horse cyt-c (Identity~60%), green highly conserved residues. There are 40 amino acid differences in the primary.
Cloning strategies in Rhizobium An overview
Enzymes Used for Gene Engineering 1. Restriction endonuclease (restriction enzymes) 2. DNA modifying enzymes a polymerases b nucleases c enzymes that modify.
DNA polymerases DNA polymerase III –main DNA builder DNA polymerase I –editing, repair & primer removal.
Gateway cloning system
ATGGCAAAAGATCGTCGCAGTAATGAAGCTGAAAATATCGCTGTTGTTGAAAAACCGCTGAAATCGGACCG CTTCTTTA TCTCTGATGGTCTGCCGAGTCCGTTCGGCCCGACCGTTCGTGATGACGGTGTGAATTTTTCTGTTTATAGT.
Vectors Timothy G. Standish, Ph. D.. Vectors If a fragment of DNA is ligated into an appropriate vector, it can be inserted into cells which will then.
11.1 Restriction and Modification Enzymes
Genetic Technologies Manipulating & Cloning DNA.
Cloning the OOMT2 Gene in Roses Kim Lovik Megan Hughes.
Essential Basic Part Types Coding Sequences (C) - Complete open reading frames (type I), or sequences encoding polypeptides but lacking either a stop codon.
Question: How do we know where a particular protein
MOLECULAR BIOLOGY IN ACTION Biomedical Innovation Problem 6.
Supplement to Figure 1 Cloning steps involved in the construction of the bidirectional T-DNA/Ds gene traps. A KpnI fragment from pSK200 (Kumar and Narayanan,
8.1 - Manipulating & Cloning DNA
Chapter 20: Part 1 DNA Cloning and Plasmids
Question: How do we know where a particular protein is located in the cell?
 Test Review Lecturer: David Mendez. But first  Take out a sheet of paper.
Scientists alter DNA of orgs to produce wanted effects. 3 steps: cut the DNA, combine DNA, and fuse DNA into a living cell. Introduction.
Molecular Cloning. Definitions   Cloning :   Obtaining a piece of DNA from its original source (Genome) and introducing it in a DNA vector   Sub-cloning:
Question: How do we know where a particular protein is located in the cell?
Fac. of Agriculture, Assiut Univ.
Figure : The reactions catalysed by the two different kinds of nuclease. (a) An exonuclease, which removes nucleotides from the end of a DNA molecule.
Advanced Workshops on Vector NTI
Methods for site-directed mutagenesis
Supplementary Figure 1: Schematic representation of plasmid and strain construction. (a) Construction of the expression vectors for RedStar2, xylanase,
Chapter 4 Recombinant DNA Technology
Manlio Fusciello Jaakko Itkonen Maarja Laos Tania Quirin
Methods S2. Detailed pDOE vector schematics and cloning strategies.
Vectors Dr Muhammad Imran.
Invest. Ophthalmol. Vis. Sci ;44(2): doi: /iovs Figure Legend:
Biotechnology: Part 1 DNA Cloning, Restriction Enzymes and Plasmids
Primer Design
New vector designs for expression and general-purpose vectors.
Step 1: amplification and cloning procedures
Cloning the OOMT2 Gene in Roses
Analysis and Characterization of Restriction enzymes (RE)
Molecular Biology Restriction enzymes.
Brca1 Controls Homology-Directed DNA Repair
Overview of Recombinant DNA Techniques
Genetic Engineering Subtitle.
BioBricks.
Developmentally Programmed Rearrangement of T Cell Receptor Vγ Genes Is Controlled by Sequences Immediately Upstream of the Vγ Genes  Jeanne E Baker,
Both of the N-Terminal and C-Terminal Regions of Human Papillomavirus Type 16 E7 are Essential for Immortalization of Primary Rat Cells  Toshiharu Yamashita,
Volume 2, Issue 5, Pages (September 2009)
Identification and differential expression of human collagenase-3 mRNA species derived from internal deletion, alternative splicing, and different polyadenylation.
Splice Site and Deletion Mutations in Keratin (KRT1 and KRT10) Genes: Unusual Phenotypic Alterations in Scandinavian Patients with Epidermolytic Hyperkeratosis 
Structure of the GM2A Gene: Identification of an Exon 2 Nonsense Mutation and a Naturally Occurring Transcript with an In-Frame Deletion of Exon 2  Biao.
Sarah K. Deng, Yi Yin, Thomas D. Petes, Lorraine S. Symington 
Analysis of hMLH1 and hMSH2 Gene Dosage Alterations in Hereditary Nonpolyposis Colorectal Cancer Patients by Novel Methods  Linnea M. Baudhuin, Ming Mai,
Vectors and promoter fragments.
Structure of the MCS in backbone vectors for the BiFC plasmids.
Relationship between Genotype and Phenotype
Registry of Parts:
Presentation transcript:

Methods S2. Detailed pDOE vector schematics and cloning strategies. ( pg. 1 ) BiFC vector sets MCS1 MCS3 MCS2 p19/XT-mTq2 MASpro Pro::Ω NmVen210 OCSt CVen210 MASt NOSt X::tag—X::tag pDOE-01, -05, -09 X::tag—tag::X pDOE-02, -06, -10 tag::X—X::tag pDOE-03, -07, -11 tag::X—tag::X pDOE-04, -08, -12 Fluoroprotein fusion vector sets MCS1 MCS3 MCS2 p19 MASpro Pro::Ω mTurquoise2 OCSt mVenus MASt NOSt X::tag—X::tag pDOE-13, -17 X::tag—tag::X pDOE-14, -18 tag::X—X::tag pDOE-15, -19 tag::X—tag::X pDOE-16, -20

( pg. 2 ) Single sheet composite view of all four pDOE multiple cloning site arrangements This page provides the restriction enzyme recognition site sequences and their relationship to the open reading frame Restriction sites are directly above the enzyme name and the trailing underscore. (e.g. NcoI__ = ccATGG) MCS1 X-tag: M G R A L G T S G G S G G G S G . S R P G G . L ccATGGGGCGCGCCCTAGGAACTAGTGGAGGATCCGGAGGTGGGTCAGGA[NVen210]tctagacccgggggttaattaa NcoI__AscI____ SpeI__ BamHI_ XbaI__SmaI__ PacI____ AvrII_ BspEI_(dam dead) MCS1 tag-X: G A S G G G S G S M G R A L G T S . S R P G G . L [NVen210]GGAGCCAGTGGAGGTGGGTCAGGATCCATGGGGCGCGCCCTAGGAACTAGTtaatctagacccgggggttaattaa NcoI_ AscI____ SpeI_ XbaI__SmaI__ PacI____ BamHI_ AvrII_ MCS3 X-tag: M G S L R S H V T S G G S G G A . A I A I . caATGGGGTCCCTACGTAGTCACGTGACGTCCGGAGGTTCTGGTGGAGCT[SFS-CVen210]gcgatcgccatttaaat SanDI__SnaBI_ Eco721 BspEI_ AsiSI___ SwaI____ AatII_ MCS3 tag-X: S G A S G M G S L R S H V T S G . A I A I . I [CVen210-SFS]TCTGGAGCTTCAGGAATGGGGTCCCTACGTAGTCACGTGACGTCCGGAtaagcgatcgccatttaaat SanDI__SnaBI_ Eco721 BspEI_ AsiSI___ SwaI____ Deviation: In the “FRET” vectors the last Ala in the linker is Gly for X::mVenus Deviation: In the “FRET” vectors the mVenus::X constructs have a longer linker (SGAGSGGGSGM) and the stop codon is TGA

Comprehensive overview of the individual BiFC systems ( pg. 3 ) MCS1 (X::tag) M G R A L G T S G G S G G G S G . S R P G G . L ccATGGGGCGCGCCCTAGGAACTAGTGGAGGATCCGGAGGTGGGTCAGGA[NmVen210]tctagacccgggggttaattaa NcoI AscI AvrII SpeI BamHI BspEI (methyl blocked) XbaI SmaI PacI MCS3 (X::tag) M G S L R S H V T S G G S G G A . A I A I . caATGGGGTCCCTACGTAGTCACGTGACGTCCGGAGGTTCTGGTGGAGCT[SFS-CVen210]gcgatcgccatttaaat SanDI SnaBI PmlI AatII BspEI AsiSI SwaI MCS1 MCS3 MCS2 p19/XT-mTq2 MASpro Pro::Ω NmVen210 OCSt CVen210 MASt NOSt KpnI NruI XhoI Bsu36I *BstXI EcoRI 1) X::tag—X::tag pDOE-01, -05, -09 MCS1 (X::tag) M G R A L G T S G G S G G G S G . S R P G G . L ccATGGGGCGCGCCCTAGGAACTAGTGGAGGATCCGGAGGTGGGTCAGGA[NmVen210]tctagacccgggggttaattaa NcoI AscI AvrII SpeI BamHI BspEI (methyl blocked) XbaI SmaI PacI MCS3 (tag::X) S G A S G M G S L R S H V T S G . A I A I . I [CVen210-SFS]TCTGGAGCTTCAGGAATGGGGTCCCTACGTAGTCACGTGACGTCCGGAtaagcgatcgccatttaaat SanDI SnaBI PmlI AatII BspEI AsiSI SwaI MCS1 MCS2 MCS3 KpnI NruI p19/XT-mTq2 MASpro NmVen210 OCSt MASt CVen210 NOSt Pro::Ω XhoI Bsu36I *BstXI EcoRI 2) X::tag—tag::X pDOE-02, -06, -10

( pg. 4 ) 3) tag::X—X::tag pDOE-03, -07, -11 4) tag::X—tag::X MCS1 (tag::X) G A S G G G S G S M G R A L G T S . S R P G G . L [NVen210]GGAGCCAGTGGAGGTGGGTCAGGATCCATGGGGCGCGCCCTAGGAACTAGTtaatctagacccgggggttaattaa BamHI NcoI AscI AvrII SpeI XbaI SmaI PacI MCS3 (X::tag) M G S L R S H V T S G G S G G A . A I A I . caATGGGGTCCCTACGTAGTCACGTGACGTCCGGAGGTTCTGGTGGAGCT[SFS-CVen210]gcgatcgccatttaaat SanDI SnaBI PmlI AatII BspEI AsiSI SwaI MCS1 MCS2 XhoI MCS3 KpnI NruI p19/XT-mTq2 MASpro NmVen210 OCSt MASt CVen210 NOSt Pro::Ω Bsu36I *BstXI EcoRI 3) tag::X—X::tag pDOE-03, -07, -11 MCS1 (tag::X) G A S G G G S G S M G R A L G T S . S R P G G . L [NVen210]GGAGCCAGTGGAGGTGGGTCAGGATCCATGGGGCGCGCCCTAGGAACTAGTtaatctagacccgggggttaattaa BamHI NcoI AscI AvrII SpeI XbaI SmaI PacI MCS3 (tag::X) S G A S G M G S L R S H V T S G . A I A I . I [CVen210-SFS]TCTGGAGCTTCAGGAATGGGGTCCCTACGTAGTCACGTGACGTCCGGAtaagcgatcgccatttaaat SanDI SnaBI PmlI AatII BspEI AsiSI SwaI MCS1 MCS2 KpnI NruI Bsu36I MCS3 p19/XT-mTq2 MASpro NmVen210 OCSt CVen210 MASt NOSt Pro::Ω XhoI *BstXI EcoRI 4) tag::X—tag::X pDOE-04, -08, -12

Cloning options for MCS1 BamHI = ..ATCC (Ser) BclI = ..ATCA (Ser) ( pg. 5 ) Cloning options for MCS1 BamHI = ..ATCC (Ser) BclI = ..ATCA (Ser) BglII = ..ATCT (Ser) MCS1 (X::tag) M G R A L G T S G G S G G G S G . S R P G G . L ccATGGGGCGCGCCCTAGGAACTAGTGGAGGATCCGGAGGTGGGTCAGGA[NmVen210]tctagacccgggggttaattaa NcoI AscI AvrII SpeI BamHI BspEI (methyl blocked) XbaI SmaI PacI Insert PCR product cut with: NcoI = ..ATGG BspHI = ..ATGA PciI = ..ATGT If your ORF is ..ATGC, insert a novel 2nd codon starting with G,A, or T such as Gly (GGN), e.g. ATG GGN [CNN] Tag removal and other conjugations via compatible ends: AvrII SpeI XbaI in frame NEB BspEI will not cut. ThermoFisher BspEI will cut this site and the site in MCS3; religating creates a MCS1/3 hybrid for tag exchange, single expression, etc. Additional options: 1) Erase the NcoI site in the ORF by overlap PCR. This is a better option overall, and allows for easy retrieval of the ORF. 2) Utilize the rare cutting AscI site.

Cloning options for MCS3 AatII out-of-frame cohesive cut ( pg.6 ) Cloning options for MCS3 AatII out-of-frame cohesive cut ZraI out-of-frame blunt cut MCS3 (X::tag) M G S L R S H V T S G G S G G A . A I A I . caATGGGGTCCCTACGTAGTCACGTGACGTCCGGAGGTTCTGGTGGAGCT[SFS-CVen210]gcgatcgccatttaaat SanDI SnaBI PmlI AatII BspEI AsiSI SwaI PCR product contribution underlined: SanDI = GGGTCCC RsrII = CGGTCCG AvaII = GGTCCn PpuMI = RGGTCCY PmlI/Eco72I in-frame blunt cut BspEI compatible sites: AgeI/BshTI = ACCGGT XmaI = CCCGGG NgoMIV = GCCGGC (plus others*) *BsaWI (WCCGGW) BsrFI (RCCGGY) If the ORF for your gene is M[X] where x = L, R, P, H, Q your primer is ATG GGG TCC [X] = MGS[X] with a SanDI site If the ORF for your gene is M[X] where x = G, A, V, E, D your primer is ATG CGG TCC [X] = MRS[X] with an RsrII site RG after ligation If the second residue of your ORF is not one of the ten residues noted above, choose one to add as a third inserted codon, e.g. MGSG[X]… * For SanDI, your primer will be ATG GGG TCC CNN [native ORF 2nd residue] * For RsrII, your primer will be ATG CGG TCC GNN [native ORF 2nd residue]

Constructions are made in the same vector, ( pg. 7 ) Constructions are made in the same vector, and the pDOE system can be thought of as one large MCS. For example: 1) Cloning into NcoI + an MCS3 upstream site yields a single cassette ORF::CVen210 construct (e.g. NcoI + MCS3 BspEI) — Orientations besides the one shown will give other products 2) Cloning into NcoI + AsiSI yields a single cassette untagged protein 3) Ligating the blunt cut sites of SmaI + SwaI deletes the third cassette (and tails MCS1 with the NOSt) MCS1 (X::tag) M G R A L G T S G G S G G G S G . S R P G G . L ccATGGGGCGCGCCCTAGGAACTAGTGGAGGATCCGGAGGTGGGTCAGGA[NmVen210]tctagacccgggggttaattaa NcoI AscI AvrII SpeI BamHI BspEI (methyl blocked) XbaI SmaI PacI BspEI MCS1/3 merge also allows fluoroprotein exhange: Cloned MCS1 ORF::mTq2  cut/religate = ORF::mVenus This merge can also doubly fluorotag a protein: Cloned MCS1 mTq2 ORF  cut/religate = mTq2::ORF::mVenus MCS3 (X::tag) M G S L R S H V T S G G S G G A . A I A I . caATGGGGTCCCTACGTAGTCACGTGACGTCCGGAGGTTCTGGTGGAGCT[SFS-CVen210]gcgatcgccatttaaat SanDI SnaBI PmlI AatII BspEI AsiSI SwaI