Long-term variations of vector and tensor anisotropies of cosmic rays

Slides:



Advertisements
Similar presentations
An analysis of long-term variations of Sq and geomagnetic activity. Relevance in data reduction for crustal and main field studies Crisan Demetrescu, Venera.
Advertisements

Investigation of daily variations of cosmic ray fluxes in the beginning of 24 th solar activity cycle Ashot Chilingarian, Bagrat Mailyan IHY-ISWI Regional.
S. Della Torre 1,2, P. Bobik 5, G. Boella 1,3, M.J. Boschini 1,4, C. Consolandi 1, M. Gervasi 1,3, D. Grandi 1, K. Kudela 5, F. Noventa 1,3, S. Pensotti.
Study of Galactic Cosmic Rays at high cut- off rigidity during solar cycle 23 Partha Chowdhury 1 and B.N. Dwivedi 2 1 Department of Physics, University.
Petukhov I.S., Petukhov S.I. Yu.G. Shafer Institute for Cosmophysical Research and Aeronomy SB RAS 21st European Cosmic Ray Symposium in Košice, Slovakia.
Possible anomalous magnetic moment and spin- flavor neutrino precession Lev I. Dorman a,b (a) Israel Cosmic Ray and Space Weather Center and Emilio Segre’
“Physics at the End of the Galactic Cosmic-Ray Spectrum” Aspen, CO 4/28/05 Diffusive Shock Acceleration of High-Energy Cosmic Rays The origin of the very-highest-energy.
Absence of a Long Lasting Southward Displacement of the HCS Near the Minimum Preceding Solar Cycle 24 X. P. Zhao, J. T. Hoeksema and P. H. Scherrer Stanford.
SPATIALLY RESOLVED MINUTE PERIODICITIES OF MICROWAVE EMISSION DURING A STRONG SOLAR FLARE Kupriyanova E. 1,Melnikov V. 1, Shibata K. 2,3, Shibasaki K.
1 Interactive DataBase of Cosmic Ray Anisotropy (DB A10) Asipenka A.S., Belov A.V., Eroshenko E.F., Klepach E.G., Oleneva V. A., Yanke, V.G. IZMIRAN, Pushkov.
CME-GEOMETRY AND COSMIC-RAY ANISOTROPY OBSERVED BY A PROTOTYPE MUON DETECTOR NETWORK K. Munakata 1, T. Kuwabara 1, J. W. Bieber 2, P. Evenson 2, R. Pyle.
North-south anisotropy of galactic cosmic rays observed with the Global Muon Detector Network 34 th ICRC (August 4, 2015, Den Hague) SH07 ID117 K. Munakata.
Recurrent Cosmic Ray Variations in József Kόta & J.R. Jokipii University of Arizona, LPL Tucson, AZ , USA 23 rd ECRS, Moscow, Russia,
Effects of the Observed Meridional Flow Variations since 1996 on the Sun’s Polar Fields David H. Hathaway 1 and Lisa Upton 2,3 1 NASA/Marshall Space Flight.
A.V. Belov 1, E. A. Eroshenko 1, H. Mavromichalaki 2, V.A. Oleneva 1, A. Papaioannou 2, G. Mariatos 2, V. G. Yanke 1 (1) Institute of Terrestrial Magnetism,
Influence of space climate and space weather on the Earth Tamara Kuznetsova IZMIRAN Russia Heliophysical phenomena and Earth's environment, 7-13 September.
02-06 Dec 2013CHPC-Cape town1 A study of the global heliospheric modulation of galactic Carbon M. D. Ngobeni, M. S. Potgieter Centre for Space Research,
Ground level enhancement of the solar cosmic rays on January 20, A.V. Belov (a), E.A. Eroshenko (a), H. Mavromichalaki (b), C. Plainaki(b), V.G.
Yakutsk results: spectrum and anisotropy M.I. Pravdin for Yukutsk Collaboration Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
References: [1]S.M. Smith et al. (2004) Advances in functional and structural MR image analysis and implementation in FSL. Neuroimage 23: [2]S.M.
TO THE POSSIBILITY OF STUDY OF THE EXTERNAL SOLAR WIND THIN STRUCTURE IN DECAMETER RADIO WAVES Marina Olyak Institute of Radio Astronomy, 4 Chervonopraporna,
P. Bobik, G. Boella, M. J. Boschini, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita 2D Stochastic Monte Carlo to evaluate the modulation.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
PCI analysis of Sunspot and Background Magnetic Field variations in the cycles V.V. Zharkova 1, S.I. Zharkov 2, Shepherd S.J. 3 and Popova 4 Zharkov.
ROCKENBACH, M. 1; DAL LAGO, A. 2; MUNAKATA, K. 3; KATO, C
27-Day Variations Of The Galactic Cosmic Ray Intensity And Anisotropy In Different Solar Magnetic Cycles ( ) M.V. Alania, A. Gil, K. Iskra, R.
SN 1987A as a Possible Source of Cosmic Rays with E 0 < eV by Yakutsk EAS Array Data A.V. Glushkov, L.T. Ksenofontov, M.I. Pravdin Yu.G. Shafer Institute.
1 Yu. Bazhutov a, S. Bazhutova a, V. Kartyshov a, V. Nekrasov a, E. Pletnikov a,O. Vedeneev b, V. Yanke a (a) Institute of Terrestrial Magnetism, Ionosphere.
1 Mei Zhang ( National Astronomical Observatory, Chinese Academy of Sciences ) Solar cycle variation of kinetic helicity Collaborators: Junwei Zhao (Stanford,
1 Seasonal variations of the m flux seen by the muon super telescope MuSTAnG Ganeva 1 M., Peglow 1 S., Hippler 1 R., Berkova.
Rachel Howe.  Why do we need to continue observing?  Why ground-based?  Requirements for a new network.
Athens University – Faculty of Physics Section of Nuclear and Particle Physics Athens Neutron Monitor Station Study of the ground level enhancement of.
Негауссовские распределения спиральности солнечных магнитных полей в цикле активности Kuzanyan Kirill Kuzanyan Kirill; Sokoloff Dmitry (IZMIRAN, RAS &
Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of SB RAS Transparency of a magnetic cloud boundary for cosmic rays I.S. Petukhov, S.I. Petukhov.
ИЗМЕНЕНИЯ МАГНИТНОЙ СПИРАЛЬНОСТИ В СОЛНЕЧНОМ ЦИКЛЕ Kirill Kuzanyan ИЗМИРАН, Россия Zhang H., Gao Yu Национальные Астрономические Обсерватории АН КНР.
1 Temperature effect of the muon component of cosmic ray and practical possibilities of its accounting Berkova M., Belov A., Smirnov D., Eroshenko E.,
Study on the Possible Contribution of Galactic Cosmic Rays to the Galactic Halo Magnetic Field Xiaobo Qu, Yi Zhang, Liang Xue* Cheng Liu, Hongbo Hu Institute.
Extreme Event Symposium 2004 MAGNETOSPHERIC EFFECT in COSMIC RAYS DURING UNIQUE MAGNETIC STORM IN NOVEMBER Institute of Terrestrial Magnetism,
What the Long-Term Sunspot Record Tells Us About Space Climate David H. Hathaway NASA/MSFC National Space Science and Technology Center Huntsville, AL,
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
11 YEAR VARIATION IN TRI-DIURNAL ANISOTROPY OF COSMIC RAY INTENSITY ON QUIET DAYS AT MID LATITUDE AND HIGH LATITUDE NEUTRON MONITORING STATION M. K. Richharia.
Drift Effects if the 22-year Solar Cycle of Cosmic Ray Modulation
Cosmogenic Muon Background
35th International Cosmic Ray Conference
Hiroko Watanabe (Kyoto Univ.)
A Relation between Solar Flare Manifestations and the GLE Onset
Search for Cosmic Ray Anisotropy with the Alpha Magnetic Spectrometer on the International Space Station G. LA VACCA University of Milano-Bicocca.
Estimates of the forthcoming solar cycles 24 and 25
Coupled ion acceleration and
Solar Modulation Davide Grandi AMS Group-INFN Milano-Bicocca.
32nd International Cosmic Ray Conference, 2011
Investigations of CME in muon flux detected in hodoscopic mode
MDI Level 1.8 Magnetograms
Electromagnetic field tensor
Galactic Cosmic Ray Propagation in the 3D Heliosphere
M. D Ngobeni*,1, M. S. Potgieter1
Effects of Bulk Viscosity at Freezeout
­Long-Term Variation of Latitudinal Distribution of Coronal Holes
Search Sources of Ultrahigh Energy Particles in our Galaxy. V. A
Xi Luo1, Ming Zhang1, Hamid K. Rassoul1, and N.V. Pogorelov2
About shape of the interplanetary shock front
Composition of Cosmic Rays at Ultra High Energies
On the relative role of drift and convection-diffusion effects in the long-term CR variations on the basis of NM and satellite data Lev Dorman (1, 2) Israel.
International Workshop
Examine solar cycle variations (11/22 yrs.) of DA in SO & SI times.
Study on Large-Scale CR Anisotropy with ARGO-YBJ experiment
A. Uryson Lebedev Physical Institute RAS, Moscow
Mariette Hitge, Adri Burger
Presentation transcript:

Long-term variations of vector and tensor anisotropies of cosmic rays P.Yu. Gololobov, G.F. Krymsky, P.A. Krivoshapkin Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia gpeter@ikfia.ysn.ru

NAGOYA MULTI-DIRECTIONAL MUON TELESCOPE Introduction 2 NAGOYA MULTI-DIRECTIONAL MUON TELESCOPE Operates since 1970 till nowadays Provides the data of 17 direction COSMIC-RAY RESEARCH SECTION SOLAR-TERRESTRIAL ENVIRONMENT LABORATORY NAGOYA UNIVERSITY, NAGOYA JAPAN http://www.stelab.nagoya-u.ac.jp/ste-www1/div3/muon/

CR anisotropy 3 𝑅 0 0 𝑅 1 1 𝑅 2 1 𝑅 2 2 Isotropic intensity 𝐼 𝜃,𝜑 = 𝑛=0 ∞ 𝑚=0 𝑛 𝑎 𝑛 𝑚 cos 𝑚𝜑 + 𝑏 𝑛 𝑚 𝑚𝜑 𝑃 𝑛 𝑚 ( sin 𝜃 ) 𝐴 =( 𝑎 0 0 , 𝑎 1 0 , 𝑎 1 1 , 𝑏 1 1 , 𝑎 2 0 , 𝑎 2 1 , 𝑏 2 1 , 𝑎 2 2 , 𝑏 2 2 ) 𝑅 𝑛 𝑚 =( 𝑎 𝑛 𝑚 , 𝑏 𝑛 𝑚 ) 𝑅 0 0 - isotropic intensity 𝑅 1 1 ={ 𝑎 1 1 , 𝑏 1 1 }- symmetric diurnal variations 𝑅 2 1 ={ 𝑎 2 1 , 𝑏 2 1 } - anti-symmetric diurnal variations 𝑅 2 2 ={ 𝑎 2 2 , 𝑏 2 2 } - semidiurnal variations Isotropic intensity Vector anisotropy Tensor anisotropy 𝑅 0 0 𝑅 1 1 𝑅 2 1 𝑅 2 2

Method of VA and TA decomposition 4 𝐴 =( 𝑎 0 0 , 𝑎 1 0 , 𝑎 1 1 , 𝑏 1 1 , 𝑎 2 0 , 𝑎 2 1 , 𝑏 2 1 , 𝑎 2 2 , 𝑏 2 2 ) 𝐴 =( 𝑎 𝑛 𝑚 , 𝑏 𝑛 𝑚 ) 𝑍 =( 𝑥 𝑛 𝑚 , 𝑦 𝑛 𝑚 ) Receiving vectors (Fujimoto et al., 1984) 𝐼= 𝐴 ∙ 𝑍 𝑨 1,𝑜𝑏𝑠 = 𝑎 1,1 𝑏 1,1 ⋮ 𝑎 1,𝑗 𝑏 1,𝑗 𝑨 2,𝑜𝑏𝑠 = 𝑎 2,1 𝑏 2,1 ⋮ 𝑎 2,𝑗 𝑏 2,𝑗 𝑴 1 = 𝑥 1,1 1 𝑦 1,1 1 𝑥 2,1 1 𝑦 2,1 1 −𝑦 1,1 1 𝑥 1,1 1 −𝑦 2,1 1 𝑥 2,1 1 ⋮ ⋮ ⋮ ⋮ 𝑥 1,𝑗 1 𝑦 1,𝑗 1 𝑥 2,𝑗 1 𝑦 2,𝑗 1 −𝑦 1,𝑗 1 𝑥 1,𝑗 1 −𝑦 2,𝑗 1 𝑥 2,𝑗 1 𝑴 2 = 𝑥 2,1 2 𝑦 2,1 2 −𝑦 2,1 2 𝑥 2,1 2 ⋮ ⋮ 𝑥 2,𝑗 2 𝑦 2,𝑗 2 −𝑦 2,𝑗 2 𝑥 2,𝑗 2 𝑨 1,𝑒𝑥𝑝 = 𝑴 1 𝑨 1,𝑜𝑏𝑠 𝑴 1 𝑇 𝑴 1 −1 𝑴 1 𝑇 𝑨 1,𝑜𝑏𝑠 = 𝑨 1,𝑒𝑥𝑝 𝑨 2,𝑒𝑥𝑝 = 𝑴 2 𝑨 2,𝑜𝑏𝑠 𝑴 2 𝑇 𝑴 2 −1 𝑴 2 𝑇 𝑨 2,𝑜𝑏𝑠 = 𝑨 2,𝑒𝑥𝑝 𝑨 1,𝑒𝑥𝑝 = 𝑎 1 1 𝑏 1 1 𝑎 2 1 𝑏 2 1 𝑨 2,𝑒𝑥𝑝 = 𝑎 2 2 𝑏 2 2 Errors: ∆ 1 = 𝑨 1,𝑜𝑏𝑠 − 𝑴 1 𝑨 1,𝑒𝑥𝑝 𝜎 1 = ∆ 1 𝑇 ∆ 1 𝑇 ( 𝑵 1 − 𝒏 1 ) ∆ 2 = 𝑨 2,𝑜𝑏𝑠 − 𝑴 2 𝑨 2,𝑒𝑥𝑝 𝜎 2 = ∆ 2 𝑇 ∆ 2 𝑇 ( 𝑵 2 − 𝒏 2 ) K. Fujimoto, A. Inoue, K. Murakami et al. Coupling coefficients of cosmic ray daily variations for meson telescopes. Report of cosmic ray research laboratory 9, 1984.

Obtained results 5 Fig. 2. The observed mean annual values of amplitudes of symmetric diurnal 𝑅 1 1 , antisymmetric diurnal 𝑅 2 1 , semidiurnal 𝑅 2 2 . Also the maximum times of symmetric diurnal 𝑇 1,𝑚𝑎𝑥 1 and semidiurnal 𝑇 2,𝑚𝑎𝑥 2 variations. The solar sunspot number and the average solar field of the Northern and Southern Hemispheres , that is taken by measurements from the Wilcox Solar Observatory http://wso.stanford.edu/Polar.html ,are shown

Obtained results 6 FFT Fig. Observed mean monthly values of the component of diurnal ( 𝑎 1 1 , 𝑏 1 1 ), antisymmetric ( 𝑎 2 1 , 𝑏 2 1 ) and semidiurnal ( 𝑎 2 2 , 𝑏 2 2 ) variations of CR which are obtained by the data of 17 directions of the multidirectional muon telescope st. Nagoya for the time period 1971-2017.

Obtained results 7 - the annual oscillations of TA are of solar origin! - the reason of such behavior is that coordinate systems which was used in the method and the mechanisms don’t match! P.A. Krivoshapkin, G.F. Krymsky, A.I. Kuzmin et al. The second spherical harmonics in the distribution of cosmic rays. Acta Physics Academiae Scientiarum Hungaricae. V. 29, P. 147, 1970. E.G. Berezhko. Acceleration of charged particles in a cosmic-phase shear flow. JETP Letters. V. 33, P. 399, 1981.

The possible mechanisms that create TA are: Obtained results 7 The possible mechanisms that create TA are: Screening of CR by IMF (Krivoshapkin et al., 1970) 𝐴 1 = 1 2 , 0, 0, 3 2 cos2𝜑 3 2 sin2𝜑 Shear flow of SW (Berezhko, 1981) 𝐴 2 ={ 0, cos𝜃, sin𝜃, 0, 0 } P.A. Krivoshapkin, G.F. Krymsky, A.I. Kuzmin et al. The second spherical harmonics in the distribution of cosmic rays. Acta Physics Academiae Scientiarum Hungaricae. V. 29, P. 147, 1970. E.G. Berezhko. Acceleration of charged particles in a cosmic-phase shear flow. JETP Letters. V. 33, P. 399, 1981.

Obtained results 8 ℎ 𝑡 =1− 𝑘 1 sin𝑡 − 𝑘 2 ( sin 2 𝑡− 1 2 ) Latitudinal distribution of Screening mechanism ℎ 𝑡 =1− 𝑘 1 sin𝑡 − 𝑘 2 ( sin 2 𝑡− 1 2 ) The resulting TA from both mechanisms in GSE coordinate system 𝐴 =ℎ 𝑡 𝐴 1 + 𝑘 3 𝐴 2 𝑴 𝑙𝑜𝑛𝑔 (𝛼)= 1 0 0 0 0 0 cos𝛼 sin𝛼 0 0 0 −sin𝛼 cos𝛼 0 0 0 0 0 cos2𝛼 sin2𝛼 0 0 0 −sin2𝛼 cos2𝛼 𝑴 𝑙𝑎𝑡 (𝛽)= 1− 3 2 sin 2 𝛽 0 − 3 2 sin2𝛽 − 3 2 sin 2 𝛽 0 0 cos𝛽 0 0 −sin𝛽 − 3 2 sin2𝛽 0 cos2𝛽 1 2 sin2𝛽 0 − 3 2 sin 2 𝛽 0 − 1 2 sin2𝛽 1 2 (1+ cos 2 β) 0 0 sin𝛽 0 0 cos𝛽 𝑴 𝑙𝑜𝑛𝑔 (𝛼) 𝑴 𝑙𝑜𝑛𝑔 (𝛽) 𝑴 𝑙𝑜𝑛𝑔 (𝛾) 𝐴

Obtained results 9 Experiment vs Model The existence of NS asymmetry (Krymsky et al., 2007, 2010) The IMF tilted to the south of helioequator ≈6.3° 𝑘 1 =0.2 𝑘 2 =0.12 𝑘 3 =0.05 𝜑=50° 𝜃=−40°

Conclusions 10 By the data of multidirectional muon telescope st. Nagoya for the period 1971-2015 using the method of receiving vectors the decomposition of the observed diurnal variations into the vector and tensor anisotropies of CR is made. It is shown that the vector anisotropy of CR experiences changes with the solar magnetic cycle and solar activity. The main mechanism of the generation of this anisotropy is convective-diffusive and drift motion of CR. It is shown that the components of tensor anisotropy( 𝑎 2 1 , 𝑏 2 1 , 𝑎 2 2 , 𝑏 2 2 ) experience stable annual and semiannual oscillation during the whole investigated time period, which are generated mainly by the CR screening mechanism. The mechanism of CR shear flow has a small contribution to this variations. Comparison of the model and experiment indicates that there is a shift of interplanetary magnetic field to the south of the solar equator on ≈6.3°.

Thank you for attention! The work was supported by the grants RFBR Nos. 15-42-05085-r_vostok_a, 15-42-05083-r_vostok_a and the program of Presidium of SB RAS No. 23. We acknowledge Cosmic Ray Section, Solar-Terrestrial Environment Laboratory, Nagoya University and Wilcox Solar Observatory for providing the data.