Addition of Real Numbers
-5 -3 5
-5 -3 5
-5 -3 5
-5 -3 5
-5 -3 5
-5 -3 5
-5 -3 5
-5 -3 5
-5 -3 5
-5 -3 5 -2
-5 -3 5 -2
-7
-7
-5 5
-5 5
-5 5
-5 5
-5 5
-5 5
-5 5
-5 5
-5 5
-5 5
-5 5
-5 5
-5 5
-5 5
-5
-5
-5
-5
-5
-5
-5
-5
-19
-19
NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE
00.00 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00
00.00 12.00 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00 12.00
00.00 12.00 -12.00 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00 12.00 -12.00
00.00 12.00 -12.00 7.00 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00 12.00 -12.00 7.00
NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00 12.00 -12.00 7.00 -19.00
Add -1.4 + 8.5
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 about
Add -1.4 + 8.5 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE
Add -1.4 + 8.5 00.00 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00
Add -1.4 + 8.5 00.00 1.40 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00 1.40
Add -1.4 + 8.5 00.00 1.40 -1.40 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00 1.40 -1.40
Add -1.4 + 8.5 00.00 1.40 -1.40 8.50 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00 1.40 -1.40 8.50
Add -1.4 + 8.5 00.00 1.40 -1.40 8.50 7.10 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00 1.40 -1.40 8.50 7.10
Add -1.4 + 8.5 = 7.1 00.00 1.40 -1.40 8.50 7.10 NUMBER OR CODE DATE TRANSACTION DESCRIPTION WITHDRAWAL(-) DEPOSIT(+) BALANCE 00.00 1.40 -1.40 8.50 7.10
Add -36 + 21
Add -36 + 21
Add -36 + 21
Add -36 + 21
Add -36 + 21
Add -36 + 21
Add -36 + 21
Add -36 + 21
Add -36 + 21
Add -36 + 21
Add -36 + 21 = -15
Add
Add 1.5
Add 1.5 +
Add 1.5 + (-1.5)
Add 1.5 + (-1.5)
Add 1.5 + (-1.5)
Add 1.5 + (-1.5)
Add 1.5 + (-1.5)
Add 1.5 + (-1.5) = 0
Add
Add
Add -9.2 + 3.1
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add -9.2 + 3.1 about
Add
Add
Add -5 5
Add -5 5
Add -5 5
Add -5 5
Add -5 5
Add -5 5
Add -5 5
Add -5 5
Add -5 5
Add -5 5
Add -5 5
Add -5 5
Add -5 5
Add -5 5 6
Add -5 5 6
Add -5 5 6
Add -5 5 6
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
The sum of any number and its opposite is 0
The opposite is also called the additive inverse. Find the additive inverse.
The opposite is also called the additive inverse. Find the additive inverse.
The opposite is also called the additive inverse. Find the additive inverse.
The opposite is also called the additive inverse. Find the additive inverse.
The opposite is also called the additive inverse. Find the additive inverse.
The opposite is also called the additive inverse. Find the additive inverse.
The opposite is also called the additive inverse. Find the additive inverse.
The opposite is also called the additive inverse. Find the additive inverse.
The opposite is also called the additive inverse. Find the additive inverse.
The opposite or additive inverse of some number
The opposite or additive inverse of some number
The opposite or additive inverse of some number a can be named
The opposite or additive inverse of some number a can be named -a.
The opposite of the opposite is the number itself.
That is for any number a
For any real number a, the opposite or additive inverse of a expressed as -a, is such that
In the course of one four-month period, the water level of Lake Champlain went down 2 ft, up 1 ft, down 5 ft, and up 3 ft. How much had the lake level changed at the end of four months?
L 1.3 Numbers 1- 68