FT Multipass MS probe TDL/CRDS FANTASIO Fourier trANsform,

Slides:



Advertisements
Similar presentations
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Advertisements

F EMTO -FANTASIO: A VERSATILE EXPERIMENTAL SET - UP TO INVESTIGATE MOLECULAR COMPLEXES K. D IDRICHE, C. L AUZIN, X. DE G HELLINCK, T. F ÖLDES, AND M. H.
CAVITY RING DOWN SPECTROSCOPY
Sub-Doppler Resolution Spectroscopy of the fundamental band of HCl with an Optical Frequency Comb ○ K. Iwakuni, M. Abe, and H. Sasada Department of Physics,
Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A. Miller EXPERIMENTAL PROGRESS FOR HIGH RESOLUTION CAVITY RINGDOWN SPECTROSCOPY OF JET-
CW lasers Four 15W green DPSS pump lasers One 25W blue-green (+UV) argon pump laser Three Ti:Sa ~700–1000nm ring lasers (410nm ring lasers.
The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,
PRECISION CAVITY ENHANCED VELOCITY MODULATION SPECTROSCOPY Andrew A. Mills, Brian M. Siller, Benjamin J. McCall University of Illinois, Department of Chemistry.
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
Applications of Cavity-Enhanced Direct Frequency Comb Spectroscopy Kevin Cossel Ye Group JILA/University of Colorado-Boulder OSU Symposium on Molecular.
Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France)
Improvements to the Dipole Blockade Mallory Walker University of Michigan REU 2006 Georg Raithel SB149
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
3 – 3.5  MIR CRDS 1 – 1.5  NIR CRDS  m -HV O2O2 N2N2 OH X a A B X X ~
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Joakim Bood and Andrew McIlroy
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Kyle Crabtree, Carrie Kauffman, Benjamin J. McCall University of Illinois at Urbana-Champaign.
Mikael Siltanen,1 Markus Metsälä,1
Mid-IR ethene detection using a quasi-phase matched LiNbO 3 waveguide 64th OSU International Symposium on Molecular Spectroscopy 23 rd June 2009.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall University of Illinois at Urbana-Champaign.
Infrared spectra of complexes containing acetylene-d2 Clément Lauzin, J. Norooz Oliaee, N. Moazzen-Ahmadi Department of Physics and Astronomy University.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
HIGH RESOLUTION OVERTONE SPECTROSCOPY OF THE ACETYLENE VAN DER WAALS DIMER, 12 (C 2 H 2 ) 2 K. D IDRICHE, C. L AUZIN, T. F ÖLDES, D. G OLEBOWSKI AND M.
High-Resolution Spectroscopy of the ν 8 Band of Methylene Bromide Using a Quantum Cascade Laser-Based Cavity Ringdown Spectrometer Jacob T. Stewart and.
Introduction Methods Conclusions Acknowledgement The geometries, energies, and harmonic vibrational frequencies of complexes studied were calculated using.
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Multiplexed Detection of CO2 using a Novel Dual-Comb Spectrometer
Haifeng Huang and Kevin K. Lehmann
Developing Continuous-Wave Raman Lasers in Solid para- Hydrogen and Barium Nitrate William R. Evans Benjamin J. McCall Takamasa Momose Department of Physics.
High Precision, Sensitive, Near-IR Spectroscopy in a Fast Ion Beam Michael Porambo, Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Benjamin.
June 19th MATH. ANNEX Atmos. Spec. TA3 9:04 a.m Simultaneous Measurements of NO 2 and its Dimer N 2 O 4 at Room Temperature with a Multiplexed.
66th Ohio State University Symposium on Molecular Spectroscopy June 20–24, 2011 HIGH RESOLUTION SPECTROSCOPY AND PRELIMINARY ANALYSIS OF C–H STRETCHING.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
I. Ventrillard-Courtillot, Th. Desbois, T. Foldes and D. Romanini
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
High Precision Infrared Spectroscopy of OH + Charles R. Markus, Adam J. Perry, James N. Hodges, G. Stephen Kocheril, Paul A. Jenkins II, Benjamin J. McCall.
Workshop for advanced THz and Compton X-ray generation
Cavity Ringdown Spectroscopy of Molecular Ions in a Fast Ion Beam Susanna L. Widicus Weaver, Andrew A. Mills, and Benjamin J. McCall Departments of Chemistry.
1 Dual Etalon Frequency Comb Spectrometer David W. Chandler and Kevin E. Strecker Sandia National Laboratories – Biological and Energy Sciences Division.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Toward a Continuous-Wave Solid para-Hydrogen Raman Laser for Molecular Spectroscopy Applications William R. Evans Benjamin J. McCall Takamasa Momose Department.
Brian Siller, Michael Porambo & Benjamin McCall Chemistry Department University of Illinois at Urbana-Champaign.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
INVESTIGATION OF VAN DER WAALS COMPLEXES IN A FREE EXPANSION OF C 2 H 2 /X (X=RARE GAS) (X=Rg) USING CW CAVITY RING-DOWN SPECTROSCOPY IN THE OVERTONE RANGE.
Development of a Fast Ion Beam Spectrometer for Molecular Ion Spectroscopy Departments of Chemistry and Astronomy University of Illinois at Urbana-Champaign.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.
SCRIBES Sensitive Cooled Resolved Ion BEam Spectroscopy
Faraday Tests of Probe Line (tvm & rxp)
Jet-cooled infrared laser spectroscopy in the umbrella 2 vibration region of NH3: improving the potential energy surface model of the NH3-Ar van der Waals.
Nicolaus Copernicus University, Institute of Physics, Toruń, Poland
Mid-IR Direct Absorption/Dispersion Spectroscopy of a Fast Ion Beam
Fabry-Perot cavity R&D at Orsay
Ultrafast goes Ultra-Sensitive:
The Near-IR Spectrum of CH3D
Comb-Assisted Cavity Ring Down Spectroscopy
69th. International Symposium on Molecular Spectroscopy
Advertisement.
High-Resolution Spectroscopy of the ν16 Band of 1,3,5-Trioxane
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall
An accurate and complete empirical line list for water vapor
Cavity Ring-down Spectroscopy Of Hydrogen In The nm Region And Corresponding Line Shape Implementation Into HITRAN Yan Tan (a,b), Jin Wang (a),
Controlling QCLs for Frequency Metrology from the Mid-IR to the THz range Paolo De Natale IQCLSW 2018.
d'Opale, F Dunkerque, France,
Fibre Lasers for SILIcon testing
Calculations and first quantitative laboratory measurements of O2 A-band electric quadrupole line intensities and positions 16O2 b(1) ← X (1) PQ(11) magnetic.
Presentation transcript:

FT Multipass MS probe TDL/CRDS FANTASIO Fourier trANsform, K. Didriche, P. Macko, M. Herman, J. Thiévin, A. Benidar, and R. Georges, JQSRT 105 (2007) 128. FT Multipass K. Didriche FANTASIO Fourier trANsform, Tunable diode and quadrupole mAss spectrometers interfaced to a Supersonic expansIOn MS probe TDL/CRDS M. Herman, K. Didriche, D. Hurtmans, B. Kizil, P. Macko, A. Rizopoulos, and P. Van Poucke, Mol. Phys. 105 (2007) 843.

Leybold MAG 3200CT Turbopump Bruker IFS120HR FTIR Leybold MAG 3200CT Turbopump 320mm diameter 28800 tours/min 2850 l/s

Hiden RC PIC Analyser-HPR30 Mass Spec Multipass S/N~5 R. Pétry, S. Klee, M. Lock, B.P. Winnewisser, and M. Winnewisser J. Mol. Spectrosc. 612 (2002) 369-381. Hiden RC PIC Analyser-HPR30 Mass Spec 320mm diameter 28800 tours/min 2850 l/s 1-510 amu

DFB, ILX lightwave 1 MHz linewidth PZT > CW-CRDS ~ 6180 – 6673 cm-1 L3 M4 1000 mm t  20 ms FSR ~ 955 MHz 540 mm 1% F-P > > > D1 1000 mm M3 30 mm 50 99% M1 > > > > L1 L2 AOM TDL M2 > DFB, ILX lightwave 1 MHz linewidth Peter Macko

2CH excitation C2H2—Ar C2H2—CO2 C2H2—N2O R = 3.2961Ǻ Q = 77+/-5 ° C. Lauzin, K. Didriche, P. Macko, J. Liévin, J. Demaison, and M. Herman, J. Phys. Chem. A, 113 (2009) 2359 R = 3.2961Ǻ Q = 77+/-5 ° 3.289Ǻ C2H2—Ar C2H2—CO2 C2H2—N2O 3.99Ǻ C. Lauzin, K. Didriche, J. Liévin, M. Herman, and A. Perrin, J. Chem. Phys., in press K. Didriche, C. Lauzin, P. Macko, M. Herman, and W.J. Lafferty, Chem. Phys. Letters, 469 (2009) 35.

12C2H2 n1+n3 FTIR Multipass CW- CRDS CRDS C2H2: 0.25 l/min Ar: 2 l/min

D2 M4 L3 FEMTO FANTASIO PZT Supersonic expansion CRDS Mass spec.

Turbo pumps Supersonic expansion CRDS Mass spec. A. Rizopoulos C. Lauzin X. de Ghellinck Turbo pumps Supersonic expansion CRDS Mass spec.

FTIR Turbo pumps Supersonic expansion CRDS Mass spec.

FT-ICLAS FTIR leq= (t1-t0) c l/L Optical pump (t0) NIR Laser (t1) Ti:Sa GAZ L l FTIR FT-ICLAS S. Kassi, C. Depiesse, M. Herman, and D. Hurtmans, Mol. Phys. 101 (2003) 1155.

Chameleon Ultra II OPO FTIR Turbo pumps Supersonic expansion CRDS 50 201 160 Chameleon Ultra II OPO 2090.4 FTIR 320 500 129.1 153.5 216.5 Turbo pumps 1090 70 300 Supersonic expansion 70 230 100 CRDS Mass spec.

Mode locked laser Laser modes

Mode locked laser Optical cavity Laser modes Cavity modes

Mode locked laser FTIR Optical cavity Laser modes Cavity modes

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311 (2006) 1595-1599. Mode locked laser FTIR Optical cavity Laser modes Cavity modes J. Mandon, G. Guelachvili, N. Picqué, Nature Photonics 3 (2009) 99-102.

Femto-FT-CEAS FTIR Mode locked laser Optical cavity Laser modes Cavity modes

AO OI ML laser D L3 FTIR S. Kassi L1 L2 M1 M2 M3 M4 M5 S1 HR2 HR1 First order P Z T Lock-in 80 kHz mod. err sig D L1 L2 L3 M1 M2 M3 M4 M5 S1 HR2 HR1 Tr. plate optical cavity FM AO Driver PID OI S. Kassi

rms noise equiv. absorption = 5 x 10-8 cm-1 Hz-1/2 amin = 3 x 10-7 cm-1 Leff = 150m (R = 99.43 %)

rms noise equiv. absorption = 5 x 10-8 cm-1 Hz-1/2 amin = 3 x 10-7 cm-1 Leff = 150m (R = 99.43 %) Transmission noise = 20% Magic point stabilisation

rms noise equiv. absorption = 5 x 10-8 cm-1 Hz-1/2 amin = 3 x 10-7 cm-1 Leff = 150m (R = 99.43 %) Transmission noise = 20% Magic point stabilisation Femto-FT-CEAS works!

14 700 – 6 329 cm-1 5 882 – 2 857 cm-1

FEMTO FANTASIO