Inverses of Relations and Functions

Slides:



Advertisements
Similar presentations
Warm Up Solve for y. 1. x = 3y –7 2. x = 3. x = 4 – y 4. x = y2 y + 5
Advertisements

Transforming Functions
Substitute 0 for y. Write original equation. To find the x- intercept, substitute 0 for y and solve for x. SOLUTION Find the x- intercept and the y- intercept.
Substitute 0 for y. Write original equation. To find the x- intercept, substitute 0 for y and solve for x. SOLUTION Find the x- intercept and the y- intercept.
y = 1. x = 3y –7 2. x = y = 8x – 5 3. x = 4 – y y = 4 – x 4. x = y2
Objectives Graph and recognize inverses of relations and functions.
Solve for y. 1. x = 3y –7 y x = 3. x = 4 – y 4. x = y2.
Objectives Graph and recognize inverses of relations and functions.
Warm Up Find the inverse of f(x) and determine if the inverse is a function. EQ: How do I find the inverse of a function algebraically and graphically?
Holt McDougal Algebra Inverses of Relations and Functions 4-2 Inverses of Relations and Functions Holt Algebra 2 Warm Up Warm Up Lesson Presentation.
Algebra II 7-4 Notes. Inverses  In section 2-1 we learned that a relation is a mapping of input values onto output values. An _______ __________ maps.
4-2 Inverse Functions. * Right Answer : D Graph and recognize inverses of relations and functions. Find inverses of functions.
Horizontal and Vertical Lines Vertical lines: Equation is x = # Slope is undefined Horizontal lines: Equation is y = # Slope is zero.
Holt McDougal Algebra 2 Solving Rational Equations and Inequalities Solving Rational Equations and Inequalities Holt Algebra 2Holt McDougal Algebra 2.
Example 1A Solve the equation. Check your answer. (x – 7)(x + 2) = 0
Solving Quadratic Equations by Factoring 8-6
Holt McDougal Algebra Solving Two-Step and Multi-Step Equations 1-4 Solving Two-Step and Multi-Step Equations Holt Algebra 1 Warm Up Warm Up Lesson.
Solving Quadratic Equations by Graphing 8-5
Variation Functions Essential Questions
Functions and Their Inverses
Inverses of Relations and Functions
Lesson 1.6 Inverse Functions. Inverse Function, f -1 (x): Domain consists of the range of the original function Range consists of the domain of the original.
Objective Solve quadratic equations by factoring..
Solving Systems by Substitution
7-2 Inverses of Relations and Functions Warm Up Lesson Presentation
Chapter 3: Functions and Graphs 3.6: Inverse Functions Essential Question: How do we algebraically determine the inverse of a function.
Lesson 1.6 Page 69: #1-77 (EOO) EXTRA CREDIT: Pages (Do any 20 problems…You choose )
How do we solve exponential and logarithmic equations and equalities?
Solving Inequalities Using Addition and Subtraction
Holt Algebra Inverses of Relations and Functions Graph and recognize inverses of relations and functions. Find inverses of functions. Objectives.
Algebra Review. Systems of Equations Review: Substitution Linear Combination 2 Methods to Solve:
Holt McDougal Algebra 2 Solving Radical Equations and Inequalities Solving Radical Equations and Inequalities Holt Algebra 2Holt McDougal Algebra 2 How.
Holt McDougal Algebra Inverses of Relations and Functions Graph and recognize inverses of relations and functions. Find inverses of functions. Objectives.
Holt McDougal Algebra 2 Multiplying and Dividing Rational Expressions Multiplying and Dividing Rational Expressions Holt Algebra 2Holt McDougal Algebra.
Solving Systems by Elimination
Solving Systems by Graphing
Solving Systems by Graphing
Objectives: To find inverse functions graphically & algebraically.
Essential Questions Solving Rational Equations and Inequalities
Essential Questions Solving Radical Equations and Inequalities
Warm Up Solve for y. y = 1. x = 3y –7 2. x = y = 8x – 5 3. x = 4 – y
Solving Systems by Graphing
5-Minute Check Lesson 3-4.
The Natural Base, e Essential Questions
Multiplying or Dividing 1-3
Solving Systems by Graphing
Algebra 1 Notes Lesson 7-2 Substitution
Solving Systems by Graphing
Warm Up 8/17/17 Find the equation of the line with
Ch 1.6: Inverse of Functions and Relations
Solving Systems by Graphing
Solving Systems by Graphing
Solving Systems by Graphing
Solving Systems by Graphing
Slope-Intercept Form 4-6 Warm Up Lesson Presentation Lesson Quiz
Functions and Their Inverses
How do we recognize and graph periodic and trigonometric functions?
How do we recognize and graph periodic and trigonometric functions?
Solving Systems by Graphing
7-2 Inverses of Relations and Functions Warm Up Lesson Presentation
Honors Algebra II with Trigonometry Mr. Agnew
Inverse Functions Inverse Functions.
6-2: Inverse Functions and Relations
You can find and apply inverses to relations and functions
Multi-Step Inequalities
Solving Equations by 1-2 Adding or Subtracting Warm Up
Solving Systems by Graphing
Inverse Functions   A function and its inverse function can be described as the "DO" and the "UNDO" functions.  A function takes a starting value, performs.
4-2 Inverses of Relations and Functions Warm Up Lesson Presentation
Presentation transcript:

Inverses of Relations and Functions Essential Questions How do we graph and recognize inverses of relations and functions? How do we find inverses of functions? Holt McDougal Algebra 2 Holt Algebra 2

You can also find the inverse function by writing the original function with x and y switched and then solving for y.

Example 1: Writing and Graphing Inverse Functions Graph f(x) = – x – 5. Then write the inverse and graph. 1 2 1 2 y = – x – 5 Set y = f(x). f –1 1 2 x = – y – 5 Switch x and y. f x + 5 = – y 1 2 Solve for y. –2x – 10 = y y = –2x - 10 f–1(x) = –2x – 10

Example 2: Writing and Graphing Inverse Functions Graph f(x) = x + 2. Then write the inverse and graph. 2 3 Set y = f(x). f–1 f Switch x and y. Solve for y.

Example 3: Graphing Inverse Functions Given the graph of f(x), graph f -1(x). Find points on the graph x y x y Switch x and y. Reflects over the line y = x.

Example 4: Retailing Applications Juan buys a CD online for 20% off the list price. He has to pay $2.50 for shipping. The total charge is $13.70. What is the list price of the CD? Step 1 Write an equation for the total charge as a function of the list price. c = 0.80L + 2.50 Charge c is a function of list price L. Substitute in $13.70 for c. Solve for L. The list price of the CD is $14.

Example 5: Retailing Applications To make tea, use teaspoon of tea per ounce of water plus a teaspoon for the pot. Find the number of ounces of water needed if 7 teaspoons of tea are used. 1 6 Step 1 Write an equation for the number of ounces of water needed. Tea t is a function of ounces of water needed z. Substitute in 7 for t. Solve for z. 36 ounces of water should be added.

Lesson 8.2 Practice B