The impact of moist singular vectors and ensemble size on predicted storm tracks for the winter storms Lothar and Martin A. Walser1) M. Arpagaus1) M. Leutbecher2)

Slides:



Advertisements
Similar presentations
ECMWF long range forecast systems
Advertisements

COSMO-SREPS COSMO Priority Project C. Marsigli, A. Montani and T. Paccagnella ARPA-SIM, Bologna, Italy.
Status and performance of HIRLAM 4D-Var Nils Gustafsson.
Verification of NCEP SFM seasonal climate prediction during Jae-Kyung E. Schemm Climate Prediction Center NCEP/NWS/NOAA.
The Problem of Parameterization in Numerical Models METEO 6030 Xuanli Li University of Utah Department of Meteorology Spring 2005.
A drag parameterization for extreme wind speeds that leads to improved hurricane simulations Gerrit Burgers Niels Zweers Vladimir Makin Hans de Vries EMS.
Cold Fronts and their relationship to density currents: A case study and idealised modelling experiments Victoria Sinclair University of HelsinkI David.
2012: Hurricane Sandy 125 dead, 60+ billion dollars damage.
14th ALADIN Workshop, Innsbruck 1-4 June 2004 First LAMEPS experiments at the Hungarian Meteorological Service Edit Hágel and Gabriella Szépszó Hungarian.
Institut für Physik der Atmosphäre Predictability of precipitation determined by convection-permitting ensemble modeling Christian Keil and George C.Craig.
Alpine Weather Forecasting Neil Stringfellow CSCS Swiss National Supercomputing Centre.
LAMEPS Development and Plan of ALADIN-LACE Yong Wang et al. Speaker: Harald Seidl ZAMG, Austria Thanks: Météo France, LACE, NCEP.
SRNWP workshop - Bologne Short range ensemble forecasting at Météo-France status and plans J. Nicolau, Météo-France.
SLEPS First Results from SLEPS A. Walser, M. Arpagaus, C. Appenzeller, J. Quiby MeteoSwiss.
Observing Strategy and Observation Targeting for Tropical Cyclones Using Ensemble-Based Sensitivity Analysis and Data Assimilation Chen, Deng-Shun 3 Dec,
The impact of moist singular vectors and ensemble size on predicted storm tracks for the winter storms Lothar and Martin A. Walser 1) M. Arpagaus 1) M.
Short-Range Ensemble Prediction System at INM José A. García-Moya & Carlos Santos SMNT – INM COSMO Meeting Zurich, September 2005.
WWOSC 2014, Aug 16 – 21, Montreal 1 Impact of initial ensemble perturbations provided by convective-scale ensemble data assimilation in the COSMO-DE model.
ISDA 2014, Feb 24 – 28, Munich 1 Impact of ensemble perturbations provided by convective-scale ensemble data assimilation in the COSMO-DE model Florian.
Prediction of Atlantic Tropical Cyclones with the Advanced Hurricane WRF (AHW) Model Jimy Dudhia Wei Wang James Done Chris Davis MMM Division, NCAR Jimy.
How can LAMEPS * help you to make a better forecast for extreme weather Henrik Feddersen, DMI * LAMEPS =Limited-Area Model Ensemble Prediction.
A.Montani; The COSMO-LEPS system: recent developments and plans 2nd Workshop on Short-Range EPS, Bologna, 7-8 April 2005 The COSMO-LEPS system: recent.
MPO 674 Lecture 20 3/26/15. 3d-Var vs 4d-Var.
Multi-Perturbation Methods for Ensemble Prediction of the MJO Multi-Perturbation Methods for Ensemble Prediction of the MJO Seoul National University A.
Data assimilation and observing systems strategies Pierre Gauthier Data Assimilation and Satellite Meteorology Division Meteorological Service of Canada.
Comparison of Different Approaches NCAR Earth System Laboratory National Center for Atmospheric Research NCAR is Sponsored by NSF and this work is partially.
Slide 1 Wind Lidar working group February 2010 Slide 1 Spaceborne Doppler Wind Lidars - Scientific motivation and impact studies for ADM/Aeolus Erland.
Large-scale surface wind extremes in the Mediterranean Shira Raveh-Rubin and Heini Wernli Institute for Atmospheric and Climate Science (IACETH), ETH Zurich.
Short-Range Ensemble Prediction System at INM José A. García-Moya SMNT – INM 27th EWGLAM & 12th SRNWP Meetings Ljubljana, October 2005.
KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association Variability in forecasts of the track.
Interoperability at INM Experience with the SREPS system J. A. García-Moya NWP – Spanish Met Service INM SRNWP Interoperability Workshop ECMWF –
Plans for Short-Range Ensemble Forecast at INM José A. García-Moya SMNT – INM Workshop on Short Range Ensemble Forecast Madrid, October,
Lennart Bengtsson ESSC, Uni. Reading THORPEX Conference December 2004 Predictability and predictive skill of weather systems and atmospheric flow patterns.
Page 1© Crown copyright 2004 SRNWP Lead Centre Report on Data Assimilation 2005 for EWGLAM/SRNWP Annual Meeting October 2005, Ljubljana, Slovenia.
Impact of the backscatter kinetic energy on the perturbation of ensemble members for strong convective event Jakub Guzikowski
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Status of the COSMO-1 configuration at MeteoSwiss Guy.
Acceleration of high winds in idealised simulations of extratropical cyclones. Tim P. Slater Prof. David M. Schultz Prof. Geraint Vaughan 3 Jan 2012 UTC.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss A more reliable COSMO-LEPS F. Fundel, A. Walser, M. A.
An Investigation of the Mesoscale Predictability over the Northeast U.S.        Brian A. Colle, Matthew Jones, and Joseph Olson Institute for Terrestrial.
Snapshots of WRF activities in the GFI/Iceland groups.
Exploring Multi-Model Ensemble Performance in Extratropical Cyclones over Eastern North America and the Western Atlantic Ocean Nathan Korfe and Brian A.
ECMWF Training course 26/4/2006 DRD meeting, 2 July 2004 Frederic Vitart 1 Predictability on the Monthly Timescale Frederic Vitart ECMWF, Reading, UK.
Slide 1 International Typhoon Workshop Tokyo 2009 Slide 1 Impact of increased satellite data density in sensitive areas Carla Cardinali, Peter Bauer, Roberto.
Slide 1© ECMWF The effect of perturbation re-centring on ensemble forecasts Simon Lang, Martin Leutbecher, Massimo Bonavita.
Vincent N. Sakwa RSMC, Nairobi
PP CONSENS Merging COSMO-LEPS and COSMO- SREPS for the short-range Chiara Marsigli, Tiziana Paccagnella, Andrea Montani ARPA-SIMC, Bologna, Italy.
Mesoscale Atmospheric Predictability Martin Ehrendorfer Institut für Meteorologie und Geophysik Universität Innsbruck Presentation at 14th ALADIN Workshop.
NCEP CMC ECMWF MEAN ANA BRIAN A COLLE MINGHUA ZHENG │ EDMUND K. CHANG Applying Fuzzy Clustering Analysis to Assess Uncertainty and Ensemble System Performance.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Status of the COSMO-1 configuration at MeteoSwiss Guy.
Munehiko Yamaguchi 12, Takuya Komori 1, Takemasa Miyoshi 13, Masashi Nagata 1 and Tetsuo Nakazawa 4 ( ) 1.Numerical Prediction.
Verification of wind gust forecasts Javier Calvo and Gema Morales HIRMAM /ALADIN ASM Utrecht May 11-15, 2009.
Figures from “The ECMWF Ensemble Prediction System”
Lothar (T+42 hours) Figure 4.
Advisor: Dr. Fuqing Zhang
Development of the two-equation second-order turbulence-convection model (dry version): analytical formulation, single-column numerical results, and.
Tropical Convection and MJO
Nigel Roberts Met Reading
Mid-latitude cyclone dynamics and ensemble prediction
André Walser MeteoSwiss, Zurich
Tuning the horizontal diffusion in the COSMO model
Daniel Leuenberger1, Christian Keil2 and George Craig2
COSMO-DE-EPS Susanne Theis, Christoph Gebhardt, Michael Buchhold,
SLEPS: Short-range limited-area ensemble prediction system
Christoph Gebhardt, Zied Ben Bouallègue, Michael Buchhold
NWP Strategy of DWD after 2006 GF XY DWD Feb-19.
42h forecast HIRLAM 50km 24h accumulated precipitation.
2nd SRNWP Workshop on Short Range Ensemble 7-8 April 2005 Bologna
Poster Session: Numerical Weather Prediction at MeteoSwiss
The Impact of Moist Singular Vectors and Horizontal Resolution on Short-Range Limited-Area Ensemble Forecasts for Extreme Weather Events A. Walser1) M.
Orographic Influences on Rainfall Associated with Tropical Cyclone
Presentation transcript:

The impact of moist singular vectors and ensemble size on predicted storm tracks for the winter storms Lothar and Martin A. Walser1) M. Arpagaus1) M. Leutbecher2) 1)MeteoSwiss, Zurich 2)ECMWF, Reading, GB

Storms Lothar & Martin Occurred on 24 Dec (Lothar) and 26/27 Dec 1999 (Martin) in Central Europe At least 80 casualties Economic losses of ~18 billions USD Not predicted by the national weather services → Motivation for the study: Improvement of early warnings for such extreme weather events

Ensemble forecasts Initial perturbations should match the uncertainties in the initial conditions. Ideally, an ensemble span the entire range of possible solutions.

Ensemble forecasts Initial perturbations should match the uncertainties in the initial conditions. Ideally, an ensemble span the entire range of possible solutions. Initial perturbations using “moist” singular vectors (SVs) might lead to a more reliable spread for short lead-times.

Moist vs. operational singular vectors Coutinho et al. (2004) ‚opr‘ SVs (T42L31, OT 48 h): linearized physics package with surface drag simple vertical diffusion ‚moist‘ SVs (T63L31, OT 24 h): linearized physics package includes additionally: gravity wave drag long-wave radiation deep cumulus convection large-scale condensation

Ensemble strategy Variant of the operational COSMO-LEPS: Global ensemble Limited-area ensemble Lokal Modell with x~10 km and 32 levels 72-h forecasts 51 members dynamical downscaling LM, x~10 km ECMWF, ∆x~80 km, opr/moist SVs

Ensemble simulations Storm Lothar: 26 December 1999 moist SVs ensembles, 19991224 00 UTC, + 72 h opr SVs ensembles, 19991224 00 UTC, + 72 h Storm Martin: 27/28 December 1999 moist SVs ensembles, 19991226 00 UTC, + 72 h opr SVs ensembles,19991226 00 UTC, + 72 h LM 3.9 ensembles: ∆x ~10 km (as COSMO-LEPS)

“Pronounced” storm track In the forecast range considered: Minimum sea level pressure of 980 hPa. At least 1000 km west-east elongation. For each ensemble member, the track with the earliest and southernmost starting point of the tracks which fulfill 1) and 2) is considered.

Lothar: Predicted storm tracks t+(42-66) < 980 hPa (1)  ensemble members: 32 tracks ▬ analysis Impact of perturbations Configuration: dry SVs/51 RMs moist SVs/51 RMs < 970 hPa < 960 hPa

Lothar: Predicted storm tracks t+(42-66) < 980 hPa (2)  ensemble members: 36 tracks ▬ analysis Impact of perturbations Configuration: dry SVs/51 RMs moist SVs/51 RMs < 970 hPa < 960 hPa

Martin: Predicted storm tracks t+(42-66) < 980 hPa (1)  ensemble members: 2 tracks ▬ analysis Impact of perturbations Configuration: dry SVs/51 RMs moist SVs/51 RMs < 970 hPa < 960 hPa

Martin: Predicted storm tracks t+(42-66) < 980 hPa (2)  ensemble members: 12 tracks ▬ analysis Impact of perturbations Configuration: dry SVs/51 RMs moist SVs/51 RMs < 970 hPa < 960 hPa

Impact of ensemble size

Lothar: Predicted storm tracks t+(42-66) < 980 hPa  ensemble members: 36 tracks (71%) ▬ analysis Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs < 970 hPa < 960 hPa

Lothar: Predicted storm tracks t+(42-66) < 980 hPa  ensemble members: 14 tracks (70%) ▬ analysis Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs < 970 hPa < 960 hPa

Lothar: Predicted storm tracks t+(42-66) < 980 hPa  ensemble members: 7 tracks (70%) ▬ analysis Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs < 970 hPa < 960 hPa

Lothar: Predicted storm tracks t+(42-66) < 980 hPa  ensemble members: 4 tracks (80%) ▬ analysis Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs < 970 hPa < 960 hPa

Forecast storm Lothar: max. wind gusts t+(42-66) (1) Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs

Forecast storm Lothar: max. wind gusts t+(42-66) (2) Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs

Forecast storm Lothar: max. wind gusts t+(42-66) (3) Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs

Forecast storm Lothar: max. wind gusts t+(42-66) (4) Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs

Forecast storm Martin: max. wind gusts t+(30-54) (1) Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs

Forecast storm Martin: max. wind gusts t+(30-54) (2) Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs

Forecast storm Martin: max. wind gusts t+(30-54) (3) moist SVs, x~10 km, 10 members Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs

Forecast storm Martin: max. wind gusts t+(30-54) (4) Impact of ensemble size Configuration: moist SVs/51 RMs moist SVs/20 RMs moist SVs/10 RMs moist SVs/5 RMs

Summary Use of moist SVs leads to a larger number of members with a storm track similar to the observed one. Potential for earlier warnings However, consequence for false alarm rate unknown Ensemble reduction method of COSMO-LEPS works well. 10 RMs seems to be a good compromise between required computing resources and forecast accuracy.

Extra Slides

Wind gusts storm Martin (27.-28.12.1999) LM analysis with nudging: Proxy for observations “Brasseur (2001) wind gusts”

Wind gusts storm Lothar (26.12.1999) LM analysis with nudging: Proxy for observations “Brasseur (2001) wind gusts”

Parameterization for 10m wind gusts LM („operational“): 3 x double turbulent kinetic energy in Prandtl-Layer: U* : Friction velocity Brasseur wind gust formulation (Mon. Wea. Rev. 129, 5-25, 2001) Brasseur: berücksichtigt die bodennahe Turbulenz. Dabei wird angenommen, dass aus höheren Schichten Luftpakete (welche grössere Geschwindigkeit haben) bis zum Boden transportiert werden. Je grösser die Turbulenz ist, aus um so grösserer Höhe stammen die Luftpakete.