“Teach A Level Maths” Vol. 1: AS Core Modules

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 2: A2 Core Modules
Advertisements

“Teach A Level Maths” Vol. 1: AS Core Modules
28: Harder Stationary Points © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
10: Polynomials © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
42: Differentiating Parametric Equations © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
21:The Factor Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
49: A Practical Application of Log Laws © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
41: Trig Equations © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
6: Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
20: Stretches © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
41: Trig Equations © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
4: Translations and Completing the Square © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
44: Stretches of the Trigonometric Functions © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
47: More Logarithms and Indices
3: Quadratic Expressions Expanding Brackets and Factorisation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9: Linear and Quadratic Inequalities © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
38: The graph of tan  © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
4: Translations and Completing the Square © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
12: Tangents and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
8: Simultaneous Equations and Intersections © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
37: The graphs of sinq and cosq
“Teach A Level Maths” Statistics 1
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
42: Harder Trig Equations
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Statistics 1
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
3: Quadratic Expressions Expanding Brackets and
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
43: Quadratic Trig Equations and Use of Identities
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
42: Harder Trig Equations
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
46: Indices and Laws of Logarithms
Presentation transcript:

“Teach A Level Maths” Vol. 1: AS Core Modules 7: More Graphs and Translations © Christine Crisp

Module C1 "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"

x = 0  y = 0, so the graph goes through the origin. The function is an example of a cubic function. To sketch the graph we notice the following: x = 0  y = 0, so the graph goes through the origin. x As x increases, y increases quickly e.g. x = 1  y = 1; x = 2  y = 8 The graph has 180 rotational symmetry about the origin When sketching a graph, we try not to PLOT points. We want the general shape not an accurate drawing. e.g. x = -1  y = -1; x = -2  y = -8

We have seen that the quadratic function is a translation of by In a similar way, is a translation of

is another cubic function Suppose we translate this function by

is another cubic function The equation for the translation by is The same rule works for all functions!

x = 0  ( infinity ) x = 2  ; x = 3  e.g. (a) Sketch the graph of (b) Write down the translation of the graph by (c) Sketch the new graph. x = 0  ( infinity ) Solution: (a) This means that on the graph, x can never be 0 As x increases, y decreases x = 2  ; x = 3  e.g. x = 1  y = 1; The graph has 180 rotational symmetry about the origin e.g.

The graph of As x increases, y decreases Rotational symmetry On this graph, the x-and y-axes form asymptotes Asymptotes are lines that a graph approaches as x or y approaches infinity.

For the graph of As

For the graph of As

For the graph of We usually show the asymptotes with a broken line. The equations of the asymptotes must always be given

(b) Translating by gives The asymptotes have also been translated

So the graph of is

SUMMARY The function given by translating any function by the vector is given by So, to find the translated function, we replace by and add ( Notice that adding q is the same as replacing y by y – q. We’ll need this later. )

Exercise Using the same axes for each pair, sketch the following functions: 1. and and 2. 3. and Check your answers using “Autograph” or a graphical calculator.

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

The function is an example of a cubic function. The graph has 180 rotational symmetry about the origin.

e.g. is a translation of of Translations

SUMMARY The function given by translating any function by the vector is given by So, to find the translated function, we replace by and add ( Notice that adding q is the same as replacing y by y – q. We’ll need this later. )

The equation for the translation by is The same rule works for all functions! is another cubic function e.g.

We usually show the asymptotes with a broken line. The equations of the asymptotes must always be given The graph of

The graph of is