MathsJam, 12th November 2016 Paul Walter

Slides:



Advertisements
Similar presentations
Rational Root Theorem.
Advertisements

SECTION 3.6 COMPLEX ZEROS; COMPLEX ZEROS; FUNDAMENTAL THEOREM OF ALGEBRA FUNDAMENTAL THEOREM OF ALGEBRA.
Zeros of Polynomial Functions Section 2.5. Objectives Use the Factor Theorem to show that x-c is a factor a polynomial. Find all real zeros of a polynomial.
5-1 Transforming Quadratics in Function Notation and Converting to Standard Form.
Limit Laws Suppose that c is a constant and the limits lim f(x) and lim g(x) exist. Then x -> a Calculating Limits Using the Limit Laws.
5.7 Apply the Fundamental Theorem of Algebra
7.5.1 Zeros of Polynomial Functions
The Rational Root Theorem The Rational Root Theorem gives us a tool to predict the Values of Rational Roots:
Section 4.3 Zeros of Polynomials. Approximate the Zeros.
7.6 Rational Zero Theorem Algebra II w/ trig. RATIONAL ZERO THEOREM: If a polynomial has integer coefficients, then the possible rational zeros must be.
Polynomials Integrated Math 4 Mrs. Tyrpak. Definition.
Mathematics. Session Definite Integrals –1 Session Objectives  Fundamental Theorem of Integral Calculus  Evaluation of Definite Integrals by Substitution.
I CAN USE LONG DIVISION AND SYNTHETIC DIVISION. I CAN APPLY THE FACTOR AND REMAINDER THEOREMS. Lesson 2-3 The Remainder and Factor Theorems.
Solving Polynomial Equations by Factoring Factoring by grouping Ex. 1. Solve:
7.6 Rational Zero Theorem Objectives: 1. Identify the possible rational zeros of a polynomial function. 2. Find all the rational zeros of a polynomial.
Solving Polynomials.
1 What you will learn today…  How to use the Fundamental Theorem of Algebra to determine the number of zeros of a polynomial function  How to use your.
2.5 The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra The Fundamental Theorem of Algebra – If f(x) is a polynomial of degree n, where.
Solve polynomial equations with complex solutions by using the Fundamental Theorem of Algebra. 5-6 THE FUNDAMENTAL THEOREM OF ALGEBRA.
Topic VII: Polynomial Functions 7.3 Solving Polynomial Equations.
5.4 The Fundamental Theorem of Calculus. I. The Fundamental Theorem of Calculus Part I. A.) If f is a continuous function on [a, b], then the function.
6 Integration Antiderivatives and the Rules of Integration
Descartes Rule of Signs Positive real zeros = Negative real zeros =
3.7 The Real Zeros of a Polynomial Function
Find the number of real solutions for x2 +8x
Sec. 1.3: Evaluating Limits Analytically
4.4 The Fundamental Theorem of Calculus
Calculus section 1.1 – 1.4 Review algebraic concepts
Real Zeros Intro - Chapter 4.2.
3.8 Complex Zeros; Fundamental Theorem of Algebra
Ch. 6 – The Definite Integral
Chapter 5 Integrals.
Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. {image}
The Fundamental Theorems of Calculus
4.5 The Fundamental Theorem of Algebra (1 of 2)
Notes 5.6 (Day 1) Find Rational Zeros.
Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. {image}
3.7 The Real Zeros of a Polynomial Function
Unit 6 – Fundamentals of Calculus Section 6
Calculus for ENGR2130 Lesson 2 Anti-Derivative or Integration
WARM UP Find all real zeros of the functions
دانشگاه شهیدرجایی تهران
Section 4.3 – Area and Definite Integrals
Zeros of a Polynomial Function
The Rational Zero Theorem
تعهدات مشتری در کنوانسیون بیع بین المللی
Apply the Fundamental Theorem of Algebra
Warm Up Simplify. Assume all variables are positive.
Chapter 5 Integration Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Definite Integrals 5.6 “u” substitution.
1.3 Evaluating Limits Analytically
Mean-Value Theorem for Integrals
The Fundamental Theorem of Calculus
Rational Root Theorem.
FINDING ROOTS WITHOUT A CLUE
Composition OF Functions.
The Fundamental Theorem of Calculus
Composition OF Functions.
Part (a) h(1) = f(g(1)) - 6 h(3) = f(g(3)) - 6 h(1) = f(2) - 6
3.6 Polynomial Functions Part 2
4.5 The Fundamental Theorem of Algebra (1 of 2)
2.5 The Real Zeros of a Polynomial Function
Fundamental Theorem of Algebra
The Fundamental Theorems of Calculus
(1) Find all of the zeros of f.
Splash Screen.
Concept 7: The Second Fundamental Theorem of Calculus
Section 5.3 – The Definite Integral
Section 5.3 – The Definite Integral
Chapter 5 Integration.
Presentation transcript:

MathsJam, 12th November 2016 Paul Walter Let e = 1 MathsJam, 12th November 2016 Paul Walter

If e approaches zero…

…substituting e = 1…

Let’s practice: f(x) = x2 1 2 3 4 5 6 7 8 9 f(x) 16 25 36 49 64 81

Let’s practice: f(x) = x2 1 2 3 4 5 6 7 8 9 f(x) 16 25 36 49 64 81 f’(x) 11 13 15 17 19

Let’s practice: f(x) = x2 1 2 3 4 5 6 7 8 9 f(x) 16 25 36 49 64 81 f’(x) 11 13 15 17 19 14 30 55 91 140 204 285

x 1 2 3 4 5 6 7 8 9 f(x) 16 25 36 49 64 81 f’(x) 11 13 15 17 19 14 30 55 91 140 204 285 (close…)

Fundamental Theorem of Calculus

Let’s take an example… x 1 2 3 4 5 6 7 8 9 g(x) 10 20 35 56 120 g’(x) 10 20 35 56 120 g’(x) 15 21 28 36 g’’

…and try to get it back… x 1 2 3 4 5 6 7 8 9 10 15 21 28 36 45 20 35 56 84 120 165

Let We have

x 1 2 3 4 5 6 7 8 9 f(x) 32 145 418 953 1876 3337 5510 8593 f’(x) 31 113 273 535 923 1461 2173 3083 f’’(x) 82 160 262 388 538 712 910 f’’’ 78 102 126 150 174 198 f’’’’ 24

x 1 2 3 4 5 6 7 8 9 f(x) 32 145 418 953 1876 3337 5510 8593 f’(x) 31 113 273 535 923 1461 2173 3083 f’’(x) 82 160 262 388 538 712 910 f’’’ 78 102 126 150 174 198 f’’’’ 24 Integrate 48 72 96 120

x 1 2 3 4 5 6 7 8 9 f(x) 32 145 418 953 1876 3337 5510 8593 f’(x) 31 113 273 535 923 1461 2173 3083 f’’(x) 82 160 262 388 538 712 910 f’’’ 78 102 126 150 174 198 f’’’’ 24 Integrate 48 72 96 120 +78

x 1 2 3 4 5 6 7 8 9 f(x) 32 145 418 953 1876 3337 5510 8593 f’(x) 31 113 273 535 923 1461 2173 3083 f’’(x) 82 160 262 388 538 712 910 f’’’ 78 102 126 150 174 198 f’’’’ 24 Integrate 48 72 96 120 +78 228 378 562 760 +160

x 1 2 3 4 5 6 7 8 9 f(x) 32 145 418 953 1876 3337 5510 8593 f’(x) 31 113 273 535 923 1461 2173 3083 f’’(x) 82 160 262 388 538 712 910 f’’’ 78 102 126 150 174 198 f’’’’ 24 Integrate 48 72 96 120 +78 228 378 562 760 +160 650 1188 1900 2810 +273

x 1 2 3 4 5 6 7 8 9 f(x) 32 145 418 953 1876 3337 5510 8593 f’(x) 31 113 273 535 923 1461 2173 3083 f’’(x) 82 160 262 388 538 712 910 f’’’ 78 102 126 150 174 198 f’’’’ 24 Integrate 48 72 96 120 +78 228 378 562 760 +160 650 1188 1900 2810 +273 1458 2919 5092 8175 +418

x 1 2 3 4 5 6 7 8 9 f(x) 32 145 418 953 1876 3337 5510 8593 f’(x) 31 113 273 535 923 1461 2173 3083 f’’(x) 82 160 262 388 538 712 910 f’’’ 78 102 126 150 174 198 f’’’’ 24 Integrate 48 72 96 120 +78 228 378 562 760 +160 650 1188 1900 2810 +273 1458 2919 5092 8175 +418

Quadratic Sequences x 1 2 3 4 5 6 7 8 9 f(x) 13 27 47 73 105 143 187 20 26 32 38 44 f’’(x)

Quadratic Sequences x 1 2 3 4 5 6 7 8 9 f(x) 13 27 47 73 105 143 187 20 26 32 38 44 f’’(x)

Dessert Real calculus Integer calculus

Dessert Real calculus Integer calculus

…so if e = 1 then e = 2! Real calculus Integer calculus

Thank you for your attention. Paul Walter paulwalter@zoho.com