PHIL Photoinjecteur au LAL

Slides:



Advertisements
Similar presentations
High Brightness Electron Source Lab.
Advertisements

The development of ultra bright electron sources: An overview B.L. Militsyn Accelerator Science and Technology Centre Science & Technology Facility Council,
RF-Gun cavity for high charge electron generation Takuya Natsui.
Diagnostics and commissioning on ERLP Yuri Saveliev ASTeC CONFORM Project: EMMA Design Review Workshop February 2007, Daresbury Laboratory.
ERLP Overview Hywel Owen ASTeC Daresbury Laboratory.
Beam current4 A Beam pulse length1.5 ms Power input/structure 35 MW Ohmic losses (beam on)1.6 MW RF power to load (beam on) 0.4 MW RF-to-beam efficiency.
Before aperture After aperture Faraday Cup Trigger Photodiode Laser Energy Meter Phosphor Screen Solenoids Successful Initial X-Band Photoinjector Electron.
Beam loading compensation 300Hz positron generation (Hardware Upgrade ??? Due to present Budget problem) LCWS2013 at Tokyo Uni., Nov KEK, Junji.
AWAKE electron source New Electron Source WP at CERN
The Fermilab Photo-Injector Jean-Paul Carneiro (Fermilab & Université Paris XI) For the A0 group (N. Barov, M. Champion, D. Edwards, H. Edwards, J. Fuerst,
Ultrafast Electron Sources for Diffraction and Microscopy Workshop December 12 th - 14 th 2012, California NanoScience Institute at UCLA Novel Ultrafast.
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
News from HZB / BESSY Wolfgang Anders at ESLS-RF Meeting September 2010 Trieste.
POSTECH PAL Development of S-band RF gun and advanced diagnostics in PAL 박용운 (Yong Woon Park, Ph.D.) 포항 가속기 연구소 (Pohang Accelerator Laboratory, PAL) 포항공과대학교.
CTF3 photo injector laser status CERN 17 July 2009 CLIC meeting.
A Polarized Electron PWT Photoinjector David Yu DULY Research Inc. California, USA SPIN2004, Trieste, Italy 10/14/04.
Photocathode 1.5 (1, 3.5) cell superconducting RF gun with electric and magnetic RF focusing Transversal normalized rms emittance (no thermal emittance)
Summary of issues. RF-Gun cavity – Disk and washer (DAW) : very fast RF ageing, 2 MeV is not enough. – Quasi travelling wave side couple structure : Lower.
Low Emittance RF Gun Developments for PAL-XFEL
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
Advancement in photo-injector laser: Second Amplifier & Harmonic Generation M. Petrarca CERN M. Martyanov, G. Luchinin, V. Lozhkarev Institute of Applied.
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
9/24-26/07 e- KOM Slide 1/20 ILC Polarized e- source RDR Overview A. Brachmann.
Field enhancement coefficient  determination methods: dark current and Schottky enabled photo-emissions Wei Gai ANL CERN RF Breakdown Meeting May 6, 2010.
–10.06 Milan Italy LUCX system and dark current (1) LUCX project (2) Phase Ⅰ and results (3) Phase Ⅱ and dark current Liu shengguang and LUCX.
Laboratoire de Chimie-Physique CNRS – Université Paris-Sud UMR ORSAY Cs 2 Te photocathodes at ELYSE.
Velocity bunching from S-band photoinjectors Julian McKenzie 1 st July 2011 Ultra Bright Electron Sources Workshop Cockcroft Institute STFC Daresbury Laboratory,
Electron Source Design Dr Tim Noakes ASTeC, STFC Daresbury Laboratory.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
MeRHIC Internal Cost Review October, Dmitry Kayran for injector group MeRHIC Internal Cost Review October 7-8, 2009 MeRHIC: Injection System Gun.
Page 1 Polarized Electron Sources for Linear Colliders October, 2010 A. Brachmann, J. C. Sheppard, F. Zhou SLAC SLAC October 18-22, 2010.
First Electrons at the Fermilab superconducting test accelerator Elvin Harms Asian Linear Collider Workshop 2015, Tsukuba 24 April 2015.
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
Rong Xiang I I Dark current measurements at the ELBE SRF gun Rong Xiang, Jochen Teichert, Pengnan Lu, Andre Arnold, Petr Murcek,
Main Technical Issues of theSuper B Injector Main Technical Issues of the Super B Injector SuperB Meeting, Isola d’Elba, May 31st – June 3rd, 2008 D. Alesini,
Photocathode based Electron Sources for Particle Accelerators – Yesterday, Today and Tomorrow B.L. Militsyn STFC ASTeC, UK European Workshop on Photocathodes.
S. Lederer & S. Schreiber (DESY Hamburg) L. Monaco & D. Sertore (INFN-LASA, Milano) Studies on the performance of Cs 2 Te photocathodes at FLASH and the.
CLIC DB injector facility, photo-injector option studies LCWS, Granada, September 26 th -30 th,2011Steffen Döbert, BE-RF  CLIC DB injector  Thermionic.
Cu,Mg Photoinjectors & LAL projects.
Photo injector dark current at FLASH and efforts for reduction at FLASH and XFEL Svem Lederer Unwanted Beam Workshop 2012 Berlin, Dec 18, 2012.
Development of High Brightness Electron Photoinjectors at ASTeC B.L. Militsyn Accelerator Science and Technology Centre Science & Technology Facility Council,
An Electron source for PERLE
S.M. Polozov & Ko., NRNU MEPhI
Phil Oxford , june 18 Photoinjector at.
Linac beam dynamics Linac dynamics : C. Bruni, S. Chancé, L. Garolfi,
EAAC, Isola d’Elba, September 2017, WG1
Beam dynamics simulation with 3D Field map for FCC RF gun
PHIL: A TEST BEAMLINE AT LAL Specifications of PHIL
Photocathode analysis and characterization at DESY
Sara Thorin, MAX IV Laboratory
An X-band system for phase space linearisation on CLARA
Status of the CLIC main beam injectors
Have a chance to operate your own beam at CERN
Cesium Telluride Photocathode Preparation at Argonne
BUNCH LENGTH MEASUREMENT SYSTEM FOR 500 KV PHOTOCATHODE DC GUN AT IHEP
Timing and synchronization at SPARC
Application of a Streak camera at PITZ
MIT Compact X-ray Source
Electron Source Configuration
Status of the CLIC Injector studies
Injector: What is needed to improve the beam quality?
Advanced Research Electron Accelerator Laboratory
Compact linear accelerator FLUTE: status update
Electron sources for FCC-ee
CLIC Feasibility Demonstration at CTF3
Electron beam dynamics
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
SuperKEKB required (e+ / e-)
Presentation transcript:

PHIL Photoinjecteur au LAL H. Monard For PHIL Team

ACCDEP context R&D photo-injectors : futur e- accelerators = very bright sources Users interested in low energy, good quality electron beam local accelerator : technical plateform developp know-how and test stand for LAL others accelerator project (THOMX ) training of personnal & students

LAL Rf gun experience Year Name ncell Application 1988 CANDELA 1.5 Rf gun made in LAL Year Name ncell Application 1988 CANDELA 1.5 R&D Rf gun 2000 Elyse Pulse Radiolysis (LCP) 2002 Alpha-x 2.5 RX Production (Univ Starchlyde)  Daresbury (EBTF) 2007 CERN/PHIN 1 CLIC (CERN) 2010 LAL/PHIN3 Phil : R&D rf gun 2013 ThomX RX production 2014 ? LAL/C4 4.5 R&D rf gun f = 3 GHz Building and running of RF gun in LAL (workshop, assembling, measurements,conditionning, running)

Photo-injection Principle F = q Ef RF (EM Wave) Charged particle Acceleration Electron Production with photoemission (cathode inside RF cavity) Laser electrons Ef Temporal structure electron – laser are identical Cylindrical cavity Stationnary wave TM010 Short pulses: ps (fs) Efforts on Photocathode & Laser Ef ~ 80 MV/m  E ~ 4 MeV over 10 cm (@3 GHz)

PHIN RF gun Used today in PHIL possible cathode change gun 2.5 cells Made in LAL F = 2998.5 MHz RF coupling

Photo-injection Principle Electron dynamics « Wrong » phase one electron on axis (r = 0) Optimisation of energy 2.5 cells Rf gun E(z,t) = Eo cos(kz) sin(wt+f) Eo = 90 MV/m « good » phase 2.7 MeV E field decelerating Energy E/Es enveloppe Ez 5.7 MeV E seen by electron

Photo-injection Principle Energy & dispersion One electron on axis (r = 0) energy out of the rf gun = f(phase) e- getting out E < 0 : e- back to photocathode (secondary emission) Dispersion of energy : dE/df minimum when energy is maximum

PHIL RF source RF source Pmax = 14 MW t = 3µs CIRCULATOR Pik Prk SF6 Pic pump Prc MODULATOR KLYSTRON pump PA RF GUN Pmax = 14 MW t = 3µs

PHIL laser 1064 nm 532 nm 266 nm Oscillator Nd-YLF F= 74,963750MHz W/impulsion: 2 nJ X 2 1 mJ Amplification Nd-YLF gain ~ 106 80 µJ Pockels cell X 2 1064 nm 532 nm 266 nm

Some measurements on PHIL Mg Cathode (alphax gun) Cu cathode dark current 92 MV/m Energy & dispersion Charge – Phase (Cu cathode) Intensity (mormalized) Energy (MeV)

PHIL yearly 2009 2010 2011 2012 2013 2014 Alphax Rf gun PHIN Rf gun Thomx RF gun 1st beam 1st user FLUO spectrum YAG2,3,4 YAG1 Ez max = 92 MV/m E ~ 5 MeV ThomX RF gun Mg test Ez max ~ 45 MV/m E < 3 MeV isolator ! LEETECH start Ez max ~ 60 MV/m E ~ 4 MeV FLUO 1st spectrum

PHIL inside LAL Beam direction Salle bleue Amphi LAL Contrôl Room Laser galerie 25 m 5,1 m 4 m 10 m 9.0 m 13.5 m 5 m Beam direction Non climatisée Modulator Klystron

PHIL today RF input 1 m ICT2 ICT1 YAG3 YAG 1 YAG2 RF gun BPM Al exit window Transfert arm laser User area Cerenkov solenoids slit Virtual Cathode YAG4 Beam stop

PHIL today Beam Parameters RF input 1 m ICT2 ICT1 YAG3 YAG 1 YAG2 RF gun BPM Al exit window Transfert arm laser User area Cerenkov solenoids slit Virtual Cathode YAG4 Beam Parameters 10 pC < Q < 300 pC (Cu) with Mg Q ~ 1.4 nC 1.5 MeV < E < 4 MeV dE/E = 0.2% for 100pC@3 MeV Pulse Duration ? (7 ps FWHM) Emittance ~ 4 to 10 mm.mrad F = 5 Hz Imoy ~ 1 nA Beam stop

Beam Exit window of PHIL window : Al 18 µm Ø16 mm Lanex screen Fluorescence sphere Beam on YAG screens & Lanex (in l’air) Distance = 5 cm YAG2 YAG3 Lanex

Examples Beam Images Transport conditions are different YAG3 YAG2 YAG4 Lanex (outside)

Beam size outside beam pipe D = 1 cm e- beam D = 6 cm Vacuum 10-7 mbar air 103 mbar D YAG screen miror CCD D = 15 cm

PHIL tomorrow Emittance (slits H&V + screen) Not installed User area YAG 1 YAG2 YAG3 User area Cathode transfert + cathode reservoir Duration measure (Cerenkov) YAG4

Photocathodes transfer 4 Cathodes holder Transfer arm « Diplomatic Suitcase » Cathodes Collaboration with CERN/CTF

First users : fluorescence of air JEM/EUSO Japanese Experiment Module EXtreme Universe Space observatory Light created by secondary particles from cosmic rays in high atmosphere LAL / APC Primaries energy estimated with flourescence of Air with precision of 20%  improved to < 5% Desired Caractéristics Charge > 100 pC measurement 2% E ~ MeV Electron beam P = 10-8 mbar P = 1 mbar à Patm T = -50°C à 20°C window Al 18 µm D. Monnier, P Gorodetsky

LEETECH @PHIL 3,6 m 2,5 m

Tomorrow’s PHIL changes ? Shorter laser pulses (100 fs) need new laser 4.5 cell RF gun Reduce energy upgrade costs magnetic chicane (2 dipoles) beam transport study+magnets Upgrade to 10 Hz decrease acquisition time Cathode preparation chamber LAL own production for PHIL and ThomX ? More users

PHIL Users Fluorescence of air High atmosphere conditions (LAL D. Monnier) – first results Diamond detector (LAL P. Bambade) X ray source (100 eV) (UPMC P Jonnard) – october ? Irradiation of electronic diodes (Univ Cherbourg ) LEETECH - Micromegas (LAL - S Barsuk) - N electron < 100 Carbon nanotubes cathode tests ? (TRT-Thales) …

PHIL after tomorrow ? RF input YAG2 ICT1 ICT2 YAG3 YAG 1 User 1 laser Canon RF 4.5 cellules Beam stop User 2 - 9 MeV - Better charge transmission - 2 users aera : 2 dipoles Dark current < 1% in user 2

Thanks to all PHIL team !

EM source (klystron ~ 15 MW) Synchronisation 5 Hz LASER Master Oscillator 75 MHz EM source (klystron ~ 15 MW) 3 GHz laser Cavity= RF gun electrons PhotoCathode Electric field E = Eo cos(kz) sin(wt+f))

Photoinjector R&D issues Parameter Laser photocathodes RF gun Energy (9 MeV) Dispersion (< 1%) Energy Distribution (x,y) Homogeneity QE(x,y) 2.5 à 4.5 cell or Booster High curent (> 1 kA) Very short pulse ( 100 fs) High QE (>10%) high gradient (> 100 MV/m) low emittance (< 5 µm.rad) Homogeneïty Electrical continuity Surface state, geometry Repetition rate (> 10 Hz) Synchronization Life time cooling Short pulse ( < 1 ps) 100 fs Response time ?

PHIL facts - Test 1st klystron (24133) : HS - Cooling of RF gun (temperature regulation) - Test 2nd klystron (24137) : Htmax 15 kV – Pik = 13 MW - Fire inside Modulateur ! - Alphax RF gun conditionning - YAG1 installation (beam diameter) - Fisrt beam 4/11/09 - Pre-amp problem Q = 100 pC, ionic pump perturbation- (HT = 12.5 kV) - Ez max alphax Rf gun = 90 MV/m - Installation YAG2,3 , 4 screens + ict2 - Laser problem - Energy Slit installation - Long stop for modulator 2009 2010 - Control room moved - Beam with 5 MeV, RF noise - Power coupler change Pic/Prc - Cathode Change, - Installation ict1 (charge measurement) - Arcing in RF isolator ! (HT > 13 kV) 2011 - Mg cathode test (Q> 1 nC) - Isolator repair - aluminum exit window (18 µm) - PHIN RF gun conditionning - New LAL electronic for ict2 - 1st user : FLUO : 1st spectrum ! 2012