CHAPTER 3 Describing Relationships

Slides:



Advertisements
Similar presentations
Scatterplots and Correlation
Advertisements

3.1b Correlation Target Goal: I can determine the strength of a distribution using the correlation. D2 h.w: p 160 – 14 – 18, 21, 26.
Chapter 3: Describing Relationships
CHAPTER 4: Scatterplots and Correlation
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.
CHAPTER 4: Scatterplots and Correlation ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 3 Describing Relationships 3.1 Scatterplots.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.
CHAPTER 4: Scatterplots and Correlation ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 3 Describing Relationships 3.1 Scatterplots.
+ Warm Up Tests 1. + The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots.
4.2 Correlation The Correlation Coefficient r Properties of r 1.
Unit 3: Describing Relationships
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 3: Describing Relationships Section 3.1 Scatterplots and Correlation.
Chapter 3: Describing Relationships
Describing Relationships
Describing Relationships
3.1 Scatterplots and Correlation
Chapter 3: Describing Relationships
Aim – How can we analyze bivariate data using scatterplots?
Chapter 6: Exploring Data: Relationships Lesson Plan
Copyright © Cengage Learning. All rights reserved.
Chapter 3: Describing Relationships
Describing Relationships
Chapter 6: Exploring Data: Relationships Lesson Plan
Scatterplots, Association, and Correlation
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Describing Relationships
Scatterplots and Correlation
Warmup In a study to determine whether surgery or chemotherapy results in higher survival rates for a certain type of cancer, whether or not the patient.
Chapter 3: Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3 Scatterplots and Correlation.
Chapter 3: Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
September 25, 2013 Chapter 3: Describing Relationships Section 3.1
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Summarizing Bivariate Data
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
AP Stats Agenda Text book swap 2nd edition to 3rd Frappy – YAY
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Correlation Coefficient
Basic Practice of Statistics - 3rd Edition
CHAPTER 3 Describing Relationships
Chapter 3: Describing Relationships
3.2 Correlation Pg
Presentation transcript:

CHAPTER 3 Describing Relationships 3.1 Scatterplots and Correlation

Scatterplots and Correlation IDENTIFY explanatory and response variables in situations where one variable helps to explain or influences the other. MAKE a scatterplot to display the relationship between two quantitative variables. DESCRIBE the direction, form, and strength of a relationship displayed in a scatterplot and identify outliers in a scatterplot. INTERPRET the correlation. UNDERSTAND the basic properties of correlation, including how the correlation is influenced by outliers USE technology to calculate correlation. EXPLAIN why association does not imply causation.

Measuring Linear Association: Correlation A scatterplot displays the strength, direction, and form of the relationship between two quantitative variables. Linear relationships are important because a straight line is a simple pattern that is quite common. Unfortunately, our eyes are not good judges of how strong a linear relationship is. The correlation r measures the direction and strength of the linear relationship between two quantitative variables. r is always a number between -1 and 1 r > 0 indicates a positive association. r < 0 indicates a negative association. Values of r near 0 indicate a very weak linear relationship. The strength of the linear relationship increases as r moves away from 0 towards -1 or 1. The extreme values r = -1 and r = 1 occur only in the case of a perfect linear relationship.

Measuring Linear Association: Correlation

Calculating Correlation The formula for r is a bit complex. It helps us to see what correlation is, but in practice, you should use your calculator or software to find r. How to Calculate the Correlation r Suppose that we have data on variables x and y for n individuals. The values for the first individual are x1 and y1, the values for the second individual are x2 and y2, and so on. The means and standard deviations of the two variables are x-bar and sx for the x-values and y-bar and sy for the y-values. The correlation r between x and y is:

Facts About Correlation How correlation behaves is more important than the details of the formula. Here are some important facts about r. Correlation makes no distinction between explanatory and response variables. r does not change when we change the units of measurement of x, y, or both. The correlation r itself has no unit of measurement. Cautions: Correlation requires that both variables be quantitative. Correlation does not describe curved relationships between variables, no matter how strong the relationship is. Correlation is not resistant. r is strongly affected by a few outlying observations. Correlation is not a complete summary of two-variable data.

Correlation Practice For each graph, estimate the correlation r and interpret it in context.

Scatterplots and Correlation IDENTIFY explanatory and response variables in situations where one variable helps to explain or influences the other. MAKE a scatterplot to display the relationship between two quantitative variables. DESCRIBE the direction, form, and strength of a relationship displayed in a scatterplot and identify outliers in a scatterplot. INTERPRET the correlation. UNDERSTAND the basic properties of correlation, including how the correlation is influenced by outliers USE technology to calculate correlation. EXPLAIN why association does not imply causation.