Announcements Project 1 Project 2

Slides:



Advertisements
Similar presentations
The Camera : Computational Photography Alexei Efros, CMU, Fall 2006.
Advertisements

CS 691 Computational Photography Instructor: Gianfranco Doretto 3D to 2D Projections.
Computer Vision CS 776 Spring 2014 Cameras & Photogrammetry 1 Prof. Alex Berg (Slide credits to many folks on individual slides)
The Camera CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2014.
Projection Readings Szeliski 2.1. Projection Readings Szeliski 2.1.
Image formation and cameras CSE P 576 Larry Zitnick Many slides courtesy of Steve Seitz.
Cameras and Projections
Modeling Light : Rendering and Image Processing Alexei Efros.
Announcements. Projection Today’s Readings Nalwa 2.1.
Lecture 5: Projection CS6670: Computer Vision Noah Snavely.
Announcements Mailing list (you should have received messages) Project 1 additional test sequences online Talk today on “Lightfield photography” by Ren.
Lecture 5: Cameras and Projection CS6670: Computer Vision Noah Snavely.
Camera model Relation between pixels and rays in space ?
CSCE641: Computer Graphics Image Formation Jinxiang Chai.
Announcements Mailing list Project 1 test the turnin procedure *this week* (make sure it works) vote on best artifacts in next week’s class Project 2 groups.
Lecture 13: Projection, Part 2
Lecture 4a: Cameras CS6670: Computer Vision Noah Snavely Source: S. Lazebnik.
Lecture 12: Projection CS4670: Computer Vision Noah Snavely “The School of Athens,” Raphael.
Lecture 6: Image Warping and Projection CS6670: Computer Vision Noah Snavely.
Single-view Metrology and Camera Calibration Computer Vision Derek Hoiem, University of Illinois 02/26/15 1.
The Camera : Computational Photography Alexei Efros, CMU, Fall 2008.
CSCE 641: Computer Graphics Image Formation & Plenoptic Function Jinxiang Chai.
Cameras, lenses, and calibration
Image formation and cameras
Perspective projection
Cameras CSE 455, Winter 2010 January 25, 2010.
EEM 561 Machine Vision Week 10 :Image Formation and Cameras
Building a Real Camera.
Lecture 14: Projection CS4670 / 5670: Computer Vision Noah Snavely “The School of Athens,” Raphael.
776 Computer Vision Jan-Michael Frahm Fall Camera.
CPSC 641: Computer Graphics Image Formation Jinxiang Chai.
Recap from Wednesday Two strategies for realistic rendering capture real world data synthesize from bottom up Both have existed for 500 years. Both are.
776 Computer Vision Jan-Michael Frahm, Enrique Dunn Spring 2013.
Single-view Metrology and Camera Calibration Computer Vision Derek Hoiem, University of Illinois 01/25/11 1.
Peripheral drift illusion. Multiple views Hartley and Zisserman Lowe stereo vision structure from motion optical flow.
EECS 274 Computer Vision Cameras.
CSE 185 Introduction to Computer Vision Cameras. Camera models –Pinhole Perspective Projection –Affine Projection –Spherical Perspective Projection Camera.
Projection Readings Nalwa 2.1 Szeliski, Ch , 2.1
More with Pinhole + Single-view Metrology
Image Formation and Cameras CSE 455 Linda Shapiro 1.
Announcements Project 1 grading session this Thursday 2:30-5pm, Sieg 327 –signup ASAP:signup –10 minute slot to demo your project for a TA »have your program.
Example: warping triangles Given two triangles: ABC and A’B’C’ in 2D (12 numbers) Need to find transform T to transfer all pixels from one to the other.
Lecture 14: Projection CS4670 / 5670: Computer Vision Noah Snavely “The School of Athens,” Raphael.
Lecture 18: Cameras CS4670 / 5670: Computer Vision KavitaBala Source: S. Lazebnik.
CSE 185 Introduction to Computer Vision
PNU Machine Vision Lecture 2a: Cameras Source: S. Lazebnik.
Computer vision: models, learning and inference
Cameras and Stereo CSE 455 Linda Shapiro.
CS5670: Computer Vision Lecture 9: Cameras Noah Snavely
Jan-Michael Frahm Fall 2016
The Camera : Computational Photography
CSE 185 Introduction to Computer Vision
CSCE 441 Computer Graphics 3-D Viewing
Announcements Project 1 Project 2 Due Wednesday at 11:59pm
CS 790: Introduction to Computational Vision
CS4670 / 5670: Computer Vision Lecture 12: Cameras Noah Snavely
Jan-Michael Frahm Fall 2016
Lecture 13: Cameras and geometry
Geometric Camera Models
EECS 274 Computer Vision Cameras.
Lecturer: Dr. A.H. Abdul Hafez
The Camera : Computational Photography
Announcements Midterm out today Project 1 demos.
Projection Readings Nalwa 2.1.
Credit: CS231a, Stanford, Silvio Savarese
Projection Readings Szeliski 2.1.
Announcements Midterm out today Project 1 demos.
Photographic Image Formation I
The Camera.
Presentation transcript:

Announcements Project 1 Project 2 due Tuesday at 11:59pm (artifact Wednesday at 11:59pm) grading session Wednesday (signup!) Project 2 choose partners by Wednesday signup: https://norfolk.cs.washington.edu/htbin-php/gtng/gtng.php 1

Projection http://www.julianbeever.net/pave.htm Readings Nalwa 2.1

Projection http://www.julianbeever.net/pave.htm Readings Nalwa 2.1

Müller-Lyer Illusion by Pravin Bhat http://www.michaelbach.de/ot/sze_muelue/index.html

Image formation Let’s design a camera Idea 1: put a piece of film in front of an object Do we get a reasonable image?

Pinhole camera Add a barrier to block off most of the rays It gets inverted Add a barrier to block off most of the rays This reduces blurring The opening known as the aperture How does this transform the image?

Pinhole cameras everywhere Sun “shadows” during a solar eclipse by Henrik von Wendt http://www.flickr.com/photos/hvw/2724969199/

Pinhole cameras everywhere Sun “shadows” during a solar eclipse http://www.flickr.com/photos/73860948@N08/6678331997/

Pinhole cameras everywhere Tree shadow during a solar eclipse photo credit: Nils van der Burg http://www.physicstogo.org/index.cfm

Camera Obscura The first camera Known to Aristotle How does the aperture size affect the image?

Shrinking the aperture Why not make the aperture as small as possible? Less light gets through Diffraction effects...

Shrinking the aperture

Adding a lens A lens focuses light onto the film “circle of confusion” A lens focuses light onto the film There is a specific distance at which objects are “in focus” other points project to a “circle of confusion” in the image Changing the shape of the lens changes this distance

(Center Of Projection) Lenses F focal point optical center (Center Of Projection) A lens focuses parallel rays onto a single focal point focal point at a distance f beyond the plane of the lens f is a function of the shape and index of refraction of the lens Aperture of diameter D restricts the range of rays aperture may be on either side of the lens Lenses are typically spherical (easier to produce)

Thin lenses Thin lens equation: Any object point satisfying this equation is in focus What is the shape of the focus region? How can we change the focus region? Thin lens applet: http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html (by Fu-Kwun Hwang )

Depth of field Changing the aperture size affects depth of field A smaller aperture increases the range in which the object is approximately in focus Flower images from Wikipedia http://en.wikipedia.org/wiki/Depth_of_field

The eye The human eye is a camera Note that the retina is curved The human eye is a camera Iris - colored annulus with radial muscles Pupil - the hole (aperture) whose size is controlled by the iris What’s the “film”? photoreceptor cells (rods and cones) in the retina

Digital camera A digital camera replaces film with a sensor array Each cell in the array is a Charge Coupled Device light-sensitive diode that converts photons to electrons other variants exist: CMOS is becoming more popular http://electronics.howstuffworks.com/digital-camera.htm

Issues with digital cameras Noise big difference between consumer vs. SLR-style cameras low light is where you most notice noise Compression creates artifacts except in uncompressed formats (tiff, raw) Color color fringing artifacts from Bayer patterns Blooming charge overflowing into neighboring pixels In-camera processing oversharpening can produce halos Interlaced vs. progressive scan video even/odd rows from different exposures Are more megapixels better? requires higher quality lens noise issues Stabilization compensate for camera shake (mechanical vs. electronic) More info online, e.g., http://electronics.howstuffworks.com/digital-camera.htm http://www.dpreview.com/

Modeling projection The coordinate system We will use the pin-hole model as an approximation Put the optical center (Center Of Projection) at the origin Put the image plane (Projection Plane) in front of the COP Why? The camera looks down the negative z axis we need this if we want right-handed-coordinates This way the image is right-side-up

Modeling projection Projection equations Compute intersection with PP of ray from (x,y,z) to COP Derived using similar triangles (on board) We get the projection by throwing out the last coordinate:

Homogeneous coordinates Is this a linear transformation? no—division by z is nonlinear Trick: add one more coordinate: homogeneous image coordinates homogeneous scene coordinates Converting from homogeneous coordinates

Perspective Projection Projection is a matrix multiply using homogeneous coordinates: divide by third coordinate This is known as perspective projection The matrix is the projection matrix Can also formulate as a 4x4 (today’s reading does this) divide by fourth coordinate

Perspective Projection How does scaling the projection matrix change the transformation?

Orthographic projection Special case of perspective projection Distance from the COP to the PP is infinite Good approximation for telephoto optics Also called “parallel projection”: (x, y, z) → (x, y) What’s the projection matrix? Image World

Orthographic (“telecentric”) lenses Navitar telecentric zoom lens http://www.lhup.edu/~dsimanek/3d/telecent.htm

Camera parameters A camera is described by several parameters Translation T of the optical center from the origin of world coords Rotation R of the image plane focal length f, principle point (x’c, y’c), pixel size (sx, sy) blue parameters are called “extrinsics,” red are “intrinsics” Projection equation The projection matrix models the cumulative effect of all parameters Useful to decompose into a series of operations projection intrinsics rotation translation identity matrix The definitions of these parameters are not completely standardized especially intrinsics—varies from one book to another

Distortion Radial distortion of the image Caused by imperfect lenses No distortion Pin cushion Barrel Radial distortion of the image Caused by imperfect lenses Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion from Helmut Dersch

Distortion

Modeling distortion To model lens distortion Project to “normalized” image coordinates Apply radial distortion Apply focal length translate image center To model lens distortion Use above projection operation instead of standard projection matrix multiplication

Many other types of projection exist... 32

360 degree field of view… Basic approach Take a photo of a parabolic mirror with an orthographic lens (Nayar) Or buy one a lens from a variety of omnicam manufacturers… See http://www.cis.upenn.edu/~kostas/omni.html

Tilt-shift images from Olivo Barbieri and Photoshop imitations http://www.northlight-images.co.uk/article_pages/tilt_and_shift_ts-e.html Tilt-shift images from Olivo Barbieri and Photoshop imitations

Rotating sensor (or object) Rollout Photographs © Justin Kerr http://research.famsi.org/kerrmaya.html Also known as “cyclographs”, “peripheral images”

Photofinish