Section 9-5 The Binomial Theorem.

Slides:



Advertisements
Similar presentations
Digital Lesson The Binomial Theorem.
Advertisements

Math 143 Section 8.5 Binomial Theorem. (a + b) 2 =a 2 + 2ab + b 2 (a + b) 3 =a 3 + 3a 2 b + 3ab 2 + b 3 (a + b) 4 =a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b.
Topic: Multiplying Polynomials  Multiplying polynomials Distribute: Each term from one polynomial is multiplied by each term in the other polynomial.
Ms. Nong Digital Lesson (Play the presentation and turn on your volume)
SFM Productions Presents: Another adventure in your Pre-Calculus experience! 9.5The Binomial Theorem.
Monday: Announcements Progress Reports this Thursday 3 rd period Tuesday/Wednesday STARR Testing, so NO Tutorials (30 minute classes) Tuesday Periods 1,3,5,7.
Copyright © Cengage Learning. All rights reserved.
The Binomial Theorem.
What does Factorial mean? For example, what is 5 factorial (5!)?
2.4 Use the Binomial Theorem Test: Friday.
BINOMIAL EXPANSION. Binomial Expansions Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 The binomial theorem provides a useful method.
The Binomial Theorem 9-5. Combinations How many combinations can be created choosing r items from n choices. 4! = (4)(3)(2)(1) = 24 0! = 1 Copyright ©
11.1 – Pascal’s Triangle and the Binomial Theorem
Warm up 1. Write the expression in expanded form, then find the sum. 2. Express the series using sigma notation.
Lesson 6.8A: The Binomial Theorem OBJECTIVES:  To evaluate a binomial coefficient  To expand a binomial raised to a power.
Copyright © Cengage Learning. All rights reserved. 8.4 The Binomial Theorem.
Binomial – two terms Expand (a + b) 2 (a + b) 3 (a + b) 4 Study each answer. Is there a pattern that we can use to simplify our expressions?
The Binomial Theorem.
Copyright © Cengage Learning. All rights reserved. 8 Sequences, Series, and Probability.
Binomial Theorem & Binomial Expansion
The Binomial Theorem. (x + y) 0 Find the patterns: 1 (x + y) 1 x + y (x + y) 2 (x + y) 3 x 3 + 3x 2 y + 3xy 2 + y 3 (x + y) 4 (x + y) 0 (x + y) 1 (x +
2-6 Binomial Theorem Factorials
How many different landscapes could be created?
A binomial is a polynomial with two terms such as x + a. Often we need to raise a binomial to a power. In this section we'll explore a way to do just.
2.6 Pascal’s Triangle and Pascal’s Identity (Textbook Section 5.2)
Section 6.4. Powers of Binomial Expressions Definition: A binomial expression is the sum of two terms, such as x + y. (More generally, these terms can.
Pg. 601 Homework Pg. 606#1 – 6, 8, 11 – 16 # … + (2n) 2 # (3n + 1) #5 #7(3n 2 + 7n)/2 #84n – n 2 #21#23 #26 #29 #33The series.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
7.1 Pascal’s Triangle and Binomial Theorem 3/18/2013.
Pg. 606 Homework Pg. 606 #11 – 20, 34 #1 1, 8, 28, 56, 70, 56, 28, 8, 1 #2 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 #3 a5 + 5a4b + 10a3b2 + 10a2b3.
8.5 The Binomial Theorem. Warm-up Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3.
PreCalculus Section 8-5 The Binomial Theorem. Objectives Use the Binomial Theorem to calculate binomial coefficients. Use binomial coefficients to write.
Combination
Section 8.5 The Binomial Theorem. In this section you will learn two techniques for expanding a binomial when raised to a power. The first method is called.
Section 8.5 The Binomial Theorem.
Binomial Theorem and Pascal’s Triangle.
Chapter 12.5 The Binomial Theorem.
Sequences, Series, and Probability
The Binomial & Multinomial Coefficients
The binomial expansions
7B and 7C This lesson is for Chapter 7 Section B
Pascal’s Triangle and the Binomial Theorem
Copyright © Cengage Learning. All rights reserved.
Use the Binomial Theorem
The Binomial Theorem Ms.M.M.
The Binomial Expansion Chapter 7
A quick and efficient way to expand binomials
Use the Binomial Theorem
Ch. 8 – Sequences, Series, and Probability
The Binomial Theorem Objectives: Evaluate a Binomial Coefficient
Digital Lesson The Binomial Theorem.
8.4 – Pascal’s Triangle and the Binomial Theorem
Digital Lesson The Binomial Theorem.
Binomial Theorem Pascal’s Triangle
4-2 The Binomial Theorem Use Pascal’s Triangle to expand powers of binomials Use the Binomial Theorem to expand powers of binomials.
Essential Questions How do we use the Binomial Theorem to expand a binomial raised to a power? How do we find binomial probabilities and test hypotheses?
Use the Binomial Theorem
11.9 Pascal’s Triangle.
The Binomial Theorem.
11.6 Binomial Theorem & Binomial Expansion
Digital Lesson The Binomial Theorem.
The Binomial Theorem OBJECTIVES: Evaluate a Binomial Coefficient
Chapter 12 Section 4.
Digital Lesson The Binomial Theorem.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Digital Lesson The Binomial Theorem.
Digital Lesson The Binomial Theorem.
The Binomial Theorem.
10.4 – Pascal’s Triangle and the Binomial Theorem
Warm Up 1. 10C P4 12C P3 10C P3 8C P5.
Presentation transcript:

Section 9-5 The Binomial Theorem

Objectives Be able to expand binomials with expansion theorem Know Pascal’s triangle for finding coefficients. Find specific terms and coefficients in an expansion

Group Work Expand The following binomials: (x + y)0 (x + y)1 (x + y)2

Consider the patterns formed by expanding (x + y)n. The binomial theorem provides a useful method for raising any binomial to a nonnegative integral power. Consider the patterns formed by expanding (x + y)n. (x + y)0 = 1 1 term (x + y)1 = x + y 2 terms (x + y)2 = x2 + 2xy + y2 3 terms (x + y)3 = x3 + 3x2y + 3xy2 + y3 4 terms (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 5 terms 6 terms (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 Notice that each expansion has n + 1 terms. Example: (x + y)10 will have 10 + 1, or 11 terms. Binomial Expansions

Patterns of Exponents in Binomial Expansions Consider the patterns formed by expanding (x + y)n. (x + y)0 = 1 (x + y)1 = x + y (x + y)2 = x2 + 2xy + y2 (x + y)3 = x3 + 3x2y + 3xy2 + y3 (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 1. The exponents on x decrease from n to 0. The exponents on y increase from 0 to n. 2. Each term is of degree n. Example: The 5th term of (x + y)10 is a term with x6y4.” Patterns of Exponents in Binomial Expansions

Binomial Coefficients The coefficients of the binomial expansion are called binomial coefficients. The coefficients have symmetry. (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 1 The first and last coefficients are 1. The coefficients of the second and second to last terms are equal to n. Example: What are the last 2 terms of (x + y)10 ? Since n = 10, the last two terms are 10xy9 + 1y10. The coefficient of xn–ryr in the expansion of (x + y)n is written or nCr . So, the last two terms of (x + y)10 can be expressed as 10C9 xy9 + 10C10 y10 or as xy 9 + y10. Binomial Coefficients

The triangular arrangement of numbers below is called Pascal’s Triangle. 0th row 1 1 1 1st row 1 + 2 = 3 1 2 1 2nd row 1 3 3 1 3rd row 6 + 4 = 10 1 4 6 4 1 4th row 1 5 10 10 5 1 5th row Each number in the interior of the triangle is the sum of the two numbers immediately above it. The numbers in the nth row of Pascal’s Triangle are the binomial coefficients for (x + y)n . Pascal’s Triangle

Example: Pascal’s Triangle Example: Use Pascal’s Triangle to expand (2a + b)4. 1 1 1st row 1 2 1 2nd row 1 3 3 1 3rd row 1 4 6 4 1 4th row 0th row 1 (2a + b)4 = 1(2a)4 + 4(2a)3b + 6(2a)2b2 + 4(2a)b3 + 1b4 = 1(16a4) + 4(8a3)b + 6(4a2b2) + 4(2a)b3 + b4 = 16a4 + 32a3b + 24a2b2 + 8ab3 + b4 Example: Pascal’s Triangle

Formula for the Binomial Coefficients The symbol n! (n factorial) denotes the product of the first n positive integers. 0! is defined to be 1. 1! = 1 4! = 4 • 3 • 2 • 1 = 24 6! = 6 • 5 • 4 • 3 • 2 • 1 = 720 n! = n(n – 1)(n – 2)  3 • 2 • 1 Formula for Binomial Coefficients For all nonnegative integers n and r, Example: Formula for the Binomial Coefficients

Example: Binomial coefficients Example: Use the formula to calculate the binomial coefficients 10C5, 15C0, and . Example: Binomial coefficients

Definition: Binomial Theorem Example: Use the Binomial Theorem to expand (x4 + 2)3. Definition: Binomial Theorem

Definition: Binomial Theorem Although the Binomial Theorem is stated for a binomial which is a sum of terms, it can also be used to expand a difference of terms. Simply rewrite (x + y) n as (x + (– y)) n and apply the theorem to this sum. Example: Use the Binomial Theorem to expand (3x – 4)4. Definition: Binomial Theorem

Example: Find the nth term Example: Find the eighth term in the expansion of (x + y)13 . Think of the first term of the expansion as x13y 0 . The power of y is 1 less than the number of the term in the expansion. The eighth term is 13C7 x 6 y7. Therefore, the eighth term of (x + y)13 is 1716 x 6 y7. Example: Find the nth term

Homework WS 13-6