Jean-Baptiste Melin U.C. Davis J. Bartlett J. Delabrouille

Slides:



Advertisements
Similar presentations
The estimation of the SZ effects with unbiased multifilters Diego Herranz, J.L. Sanz, R.B. Barreiro & M. López-Caniego Instituto de Física de Cantabria.
Advertisements

Planck 2013 results, implications for cosmology
Inspiral Parameter Estimation via Markov Chain Monte Carlo (MCMC) Methods Nelson Christensen Carleton College LIGO-G Z.
Exploring Dark Energy With Galaxy Cluster Peculiar Velocities Lloyd Knox & Alan Peel University of California, Davis.
Foreground cleaning in CMB experiments Carlo Baccigalupi, SISSA, Trieste.
Cleaned Three-Year WMAP CMB Map: Magnitude of the Quadrupole and Alignment of Large Scale Modes Chan-Gyung Park, Changbom Park (KIAS), J. Richard Gott.
FastICA as a LOFAR-EoR Foreground Cleaning Technique Filipe Abdalla and Emma Woodfield University College London with Saleem Zaroubi, Vibor Jelic, Panos.
Aspects of Conditional Simulation and estimation of hydraulic conductivity in coastal aquifers" Luit Jan Slooten.
Galaxy and Mass Power Spectra Shaun Cole ICC, University of Durham Main Contributors: Ariel Sanchez (Cordoba) Steve Wilkins (Cambridge) Imperial College.
Zeldovich-Sakharov program at RATAN-600 “Cosmological Gene” project Ground based support of the Space CMB Missions Y.Parijskij et al Special Astrophysical.
The Sunyaev-Zel’dovich effect The Sunyaev-Zel’dovich effect AMI day, 2011 September 30 Mark Birkinshaw University of Bristol.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
High Resolution Observations of the CMB with the CBI Interferometer XVIII th IAP Colloquium - July Carlo Contaldi CITA.
Introduction to Power Spectrum Estimation Lloyd Knox (UC Davis) CCAPP, 23 June 2010.
Introduction To Signal Processing & Data Analysis
Separating Cosmological B-Modes with FastICA Stivoli F. Baccigalupi C. Maino D. Stompor R. Orsay – 15/09/2005.
Southern African Large Telescope Observations of ACT SZ-Selected Clusters Brian Kirk Catherine Cress, Matt Hilton, Steve Crawford, Jack Hughes, Felipe.
Thomas Kitching Bayesian Shape Measurement and Galaxy Model Fitting Thomas Kitching Lance Miller, Catherine Heymans, Alan Heavens, Ludo Van Waerbeke Miller.
Cosmological Tests using Redshift Space Clustering in BOSS DR11 (Y. -S. Song, C. G. Sabiu, T. Okumura, M. Oh, E. V. Linder) following Cosmological Constraints.
Bill Reach 2009 May 14 Greater IPAC Technology Symposium.
CMB & Foreground Polarisation CMB 2003 Workshop, Minneapolis Carlo Baccigalupi, SISSA/ISAS.
OCRA-p science projects Marcin Gawroński Bonn 14.III.2011.
Galaxies and galaxy clusters at mm wavelengths: the view from the South Pole Telescope Gil Holder.
Constraining cluster abundances using weak lensing Håkon Dahle Institute of Theoretical Astrophysics, University of Oslo.
1 Spectral filtering for CW searches S. D’Antonio *, S. Frasca %&, C. Palomba & * INFN Roma2 % Universita’ di Roma “La Sapienza” & INFN Roma Abstract:
Beam profile sensitivity of WMAP CMB power spectrum Utane Sawangwit & Tom Shanks Durham University.
Joint analysis of Archeops and WMAP observations of the CMB G. Patanchon (University of British Columbia) for the Archeops collaboration.
Computer Vision Lab. SNU Young Ki Baik Nonlinear Dimensionality Reduction Approach (ISOMAP, LLE)
Academia Sinica National Taiwan University AMiBA System Performance Kai-yang Lin 1,2 and AMiBA Team 1,2,3 1 Institute of Astronomy and Astrophysics, Academia.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Cosmological Constraints from the maxBCG Cluster Sample Eduardo Rozo October 12, 2006 In collaboration with: Risa Wechsler, Benjamin Koester, Timothy McKay,
M. Principe, GWDAW-10, 16th December 2005, Brownsville, Texas Modeling the Performance of Networks of Gravitational-Wave Detectors in Bursts Search Maria.
The Very Small Array Angela Taylor & Anze Slosar Cavendish Astrophysics University of Cambridge.
Array for Microwave Background Anisotropy AMiBA SZ Science AMiBA Team NTU Physics Figure 4. Simulated AMiBA deep surveys of a 1deg 2 field (no primary.
EBEx foregrounds and band optimization Carlo Baccigalupi, Radek Stompor.
Adventures in Parameter Estimation Jason Dick University of California, Davis.
Blind Component Separation for Polarized Obseravations of the CMB Jonathan Aumont, Juan-Francisco Macias-Perez Rencontres de Moriond 2006 La.
Background 2 Outline 3 Scopus publications 4 Goal and a signal model 5Harmonic signal parameters estimation.
Basic Detector Measurements: Photon Transfer Curve, Read Noise, Dark Current, Intrapixel Capacitance, Nonlinearity, Reference Pixels MR – May 19, 2014.
Tim Pearson US Planck Data Analysis Review 9-10 May 2006 US Planck Data Analysis Review Source Extraction Tim Pearson.
US Planck Data Analysis Review 1 Kevin Huffenberger, JPLUS Planck Data Analysis Review 9–10 May 2006 Point Sources Kevin Huffenberger Caltech postdoctoral.
Hernández-Monteagudo, "Planck's Constraints on Peculiar Velocities"1.
Comparison of filters for burst detection M.-A. Bizouard on behalf of the LAL-Orsay group GWDAW 7 th IIAS-Kyoto 2002/12/19.
APEX stuff – 4 Feb 2003 Martin White Department of Physics Department of Astronomy UC Berkeley Lawrence Berkeley National Lab.
EGEE-III INFSO-RI Enabling Grids for E-sciencE EGEE and gLite are registered trademarks Constraints on primordial non-Gaussianity.
SEARCH FOR INSPIRALING BINARIES S. V. Dhurandhar IUCAA Pune, India.
Biased total mass of CC galaxy clusters by SZE measurements Andrea Conte Astronomy PhD, XXIII Cycle “Sapienza” University of Rome. School of Astrophysics.
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Thomas Cokelaer on behalf of the LIGO Scientific Collaboration.
Point source contamination in Galaxy cluster
Reducing Photometric Redshift Uncertainties Through Galaxy Clustering
Summary Neta A. Bahcall Princeton University
A 2 veto for Continuous Wave Searches
Towards the first detection using SPT polarisation
Testing Primordial non-Gaussianities in CMB Anisotropies
Monte Carlo Quality Assessment (MC-QA)
The Q Pipeline search for gravitational-wave bursts with LIGO
Missing Thermal Energy of the Universe
Signal processing.
Princeton University & APC
A.M. Sintes for the pulgroup
Kijung Shin1 Mohammad Hammoud1
Lecture 2 – Monte Carlo method in finance
Bayesian Estimation of the isotropy violation in the CMB sky
Wavelet method for source detection in GLAST photon-counting images
LSST Science: Supernova/Transients/variable stars
Coherent analysis of CMB anisotropies CMB, structures and Foregrounds
C M B S e c o n d a r y A n i s o t r o p i e s a t
Volume 86, Issue 3, Pages (March 2004)
Real-time Uncertainty Output for MBES Systems
Separating E and B types of CMB polarization on an incomplete sky Wen Zhao Based on: WZ and D.Baskaran, Phys.Rev.D (2010) 2019/9/3.
Presentation transcript:

Extracting clusters and determining the selection function for SZ surveys Jean-Baptiste Melin U.C. Davis J. Bartlett J. Delabrouille APC – College de France

Contents I. Theoretical selection function of SZ cluster surveys II. Fast SZ extraction algorithm III. Selection function results

Contents I. Theoretical selection function of SZ cluster surveys II. Fast SZ extraction algorithm III. Selection function results

The selection function ? Contamination Completeness (c,Y)= Number of false detections Total number of detections (recovered clusters + false detections) (c,Y)= Number of recovered clusters True number of clusters If you don’t know  and y, don’t expect to do science !

Matched filters (1/2) AMPLITUDE ? c NORMALIZED TEMPLATE NOISE Haehnelt & Tegmark 96 Herranz et al. 2002a, 2002b AMPLITUDE ? c c=2 arcmin CMB CMB+beam Instrumental noise NORMALIZED TEMPLATE NOISE

Matched filters (2/2)  in Fourier space  in real space Aest linear estimator unbiased <Aest-A>=0 minimize the variance =<(Aest-A)2>  in Fourier space  in real space [arbitrary unit] [arbitrary unit] Aest (S/N)est= Aest/ single-frequency & multi-frequency

Y = Aest Tc > 5 .  . Tc AMI-like : =15GHz, beam=2arcmin inst. noise=5µK/beam, pt. sources : S<100Jy Aest/>5 Y = Aest Tc > 5 .  . Tc

Contents I. Theoretical selection function of SZ cluster surveys II. Fast SZ extraction algorithm III. Selection function results

Cluster extraction in 3 steps Simulations 3º 3º 15 GHz 30 GHz 90 GHz pix=30’’ Primary CMB anisotropies Instrumental beam (fwhm=2 arcmin) Insrumental white noise (DT=20 K/pix) Radio sources (S<0.1mJy at 15 GHZ) Multifrequency (n=15, 30, 90 GHz) Cosmology : LCDM

Cluster extraction Filtered map sample Step 1 … … c(filter)=3.0 arcmin c(filter)=0.1 arcmin c(filter)=1.6 arcmin

Cluster extraction Cluster candidates Step 2 S/Nthreshold = 3, 5, … S/Ncarte> S/Nthreshold … … c(filter)=3.0 arcmin c(filter)=0.1 arcmin c(filter)=1.6 arcmin

Cluster extraction c and Y recovery Step 3 c given by the node having the highest S/N in a given branch Y derived from the filtered map at scale c c=3.0 arcmin . c=0.3 arcmin c=0.2 arcmin c=0.1 arcmin

Contents I. Theoretical selection function of SZ cluster surveys II. Fast SZ extraction algorithm III. Selection function results

Single frequency – 15 GHz 50 simulations (3 deg × 3 deg each) Cl perfectly known simulations detection theoretical selection fit CBI excess simulations detection theoretical selection fit

Single frequency – 15 GHz Cluster counts Clusters with Y>5.10-5arcmin2

Single frequency – 15 GHz Cosmological parameters BIAS !

Conclusions Multi-frequency/Single-frequency Selection function non-trivial depends on instrument, observation strategy, confusion, cluster physics & data pipeline Bias Additional source of error ‘Survey calibration’ &

The method A Monte Carlo triangle Fast SZ simulation tool Fast SZ detection tool Input catalog Output catalog Comparison Selection function

Single frequency – 15 GHz A non-trivial selection function Clusters with Y>5.10-5arcmin2 Y>10-4arcmin2 Y>3.10-4arcmin2

Single frequency – 15 GHz Theoretical selection curves détecté detected non détecté not detected