Ch. Stoyanov Two-Phonon Mixed-Symmetry States in the Domain N=52 Nuclear structure calculations in a large domain of excitation energies Two-Phonon Mixed-Symmetry States in the Domain N=52 Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia, Bulgaria
Nuclear structure calculations in a large domain of excitation energies Microscopic description of mixed-symmetry states in nearly spherical nuclei Low-lying isovector excitations are naturally predicted in the algebraic IBM-2 as mixed symmetry states. Their main signatures are relatively weak E2 and strong M1 transition to symmetric states. T. Otsuka , A.Arima, and Iachello, Nucl .Phys. A309, 1 (1978) P. van Isacker, K.Heyde, J.Jolie et al., Ann. Phys. 171, 253 (1986)
U(5) limit of IBM-2 1 July 2016 Ch. Stoyanov
E2 and M1transitions connecting one phonon states 1 July 2016 Ch. Stoyanov
M1 Transitions conneting two-phonon states 1 July 2016 Ch. Stoyanov
General view 11 July 2015 Ch. Stoyanov
Nuclear structure calculations in a large domain of excitation energies The model Hamiltonian
Quasiparticle RPA (collective effects) Nuclear structure calculations in a large domain of excitation energies Quasiparticle RPA (collective effects)
Quasiparticle RPA (2) (quasiboson approximation) Ch. Stoyanov
Quasiparticle RPA (3) (collective effects) Nuclear structure calculations in a large domain of excitation energies Nuclear structure calculations in a large domain of excitation energies Quasiparticle RPA (3) (collective effects) 14
mixed-symmetry states Nuclear structure calculations in a large domain of excitation energies Applications Even-even nuclei mixed-symmetry states
Mixed symmetry states Experiment Nuclear structure calculations in a large domain of excitation energies Mixed symmetry states Experiment N. Pietralla et al., Phys. Rev. C 58, 796 (1998), N. Pietralla et al., Phys. Rev. Lett. 83, 1303 (1999) inelastic hadron scattering cross sections measurements of the electron conversion coefficients in β decay 1 July 2016 Ch. Stoyanov 23
Mixed symmetry states Experiment Nuclear structure calculations in a large domain of excitation energies Mixed symmetry states Experiment MS have been populated by means of many nuclear reactions as Inelastic scattering of Electrons Photons β decay Coulomb excitation 1 July 2016 Ch. Stoyanov 24
Nuclear structure calculations in a large domain of excitation energies Review papers N. Pietralla, P. von Brentano, and A. F. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008). N Lo Iudice, V Yu Ponomarev, Ch Stoyanov, A V Sushkov, V V Voronov J. Phys. G: Nucl. Part. Phys. 39 (2012) 043101
Test of the Structure In order to test the isospin nature of 2+ states the following ratio is computed: This ratio probes: The isoscalar ((2+)<1) and The isovector (B(2+)>1) properties of the 2+ state under consideration
Nuclear structure calculations in a large domain of excitation energies The dependence of M1 and E2 transitions on the ratio G(2)/k0(2) in 136Ba.
Nuclear structure calculations in a large domain of excitation energies Structure of the first RPA phonons (only the largest components are given) and corresponding B(2+) ratios for 136Ba B(2+)
Nuclear structure calculations in a large domain of excitation energies 11 July 2015 Ch. Stoyanov 30
Explanation of the method used The quasi-particle Hamiltonian is diagonalized using the variational principle with a trial wave function of total spin JM Where ψ0 represents the phonon vacuum state and R, P and T are unknown amplitudes; ν labels the specific excited state.
B(E2; g.s.→ 2+) strength distributions in 94Mo. Nuclear structure calculations in a large domain of excitation energies B(E2; g.s.→ 2+) strength distributions in 94Mo.
B(M1;2+k →2+1 ) strength distributions in 94Mo Nuclear structure calculations in a large domain of excitation energies B(M1;2+k →2+1 ) strength distributions in 94Mo
96Ru New experimental information Hennig et al. Phys. Rev. C 92 064317 (2015) Properties of the two-phohon mixed-symmetry quintuplet 2+1(sm) ⃰ 2+2(ms) Ch. Stoyanov
Contribution of main components in the structure of low-lying QRPA 2+ states in 96Ru. Jπ E(MeV) Structure B(E2,g.st.→2+) (W.u.) B(M1) ( μ2N) 2+2→2+1 2+ 1 0.999 0.79(2d5/2)2n + 1.1(1g9/2)2p 96 2+ 2 2.276 - 1.19(2d5/2)2n + 0.75(1g9/2)2p 3.8 1.37 Ch. Stoyanov
96 Ru isospin nature of 2+ states Jπ B (2+) 2+1 0.013 isoscalar (symmetric) 2+2 1.25 isovector (mixed symmetry) Ch. Stoyanov
State Jπ E(MeV) EXP. QPM Structure,% 2+1 2+2 2+3 2+1 0.832 0.775 88%[2+1]QRPA +5%{[2+1]QRPA ⃰ [2+1]QRPA} + … 2+2 1.932 1.826 80% {[2+1]QRPA ⃰ [2+1]QRPA} + …. 2+3 2.283 2.164 90% [2+2 ]QRPA + .. Ch. Stoyanov
State E (MeV) Transition E2 [Wu] M1 [μN] strength Jπ EXP. QPM Nuclear structure calculations in a large domain of excitation energies State E (MeV) Transition E2 [Wu] M1 [μN] strength Jπ EXP. QPM Jπi → Jπf σλ B(σλ)exp B(σλ)QPM g e f f = 0.8 g f ree B(σλ)IBM 2+1 0.832 0.775 2+1 →0+1 18.1(5) 16 18.4 2+2 1.932 1.826 2+2 →2+1 2+2 →0+1 0.05(2) …….. 28(9) 0.11 0.77 30 24 2+3 2.283 2.164 2+3 →2+1 2+3 →0+1 0.69(14) 1.36(19) 0.63 0.75 0.69 2.53 Ch. Stoyanov
Distribution of two-phonon component {[2+1(sm)]QRPA ⃰ [2+2(ms)]QRPA} Jπ contribution E[MeV] 2+3 2.47% 2.16 MeV 2+4 21 % 2.98 MeV 2+5 69% 3.34 MeV Ch. Stoyanov
Forth and fifth quadrupole excitations Jπ State E (MeV) Transition strength EXP. QPM Jπi → Jπf σλ B(σλ)exp B(σλ)QPM g e f f = 0.8 g free B(σλ)IBM 2+4 2.980 2+4→0+1 2+4→2+1 2+4→2+2 E2 M1 0.01 2.9 0.06 2+5 2.740 3.338 2+5 →0+1 2+5 →2+1 2+5 →2+2 0.006(12) 0.58(15) 0.17(3) 0.16 1.1 0.15 1.92 0.17 Ch. Stoyanov
3+ excited states structure Jπ E(MeV) EXP. QPM Structure,% 3+1 2.852 2.644 9% {[2+1]QRPA ⃰ [2+2]QRPA} + …. 3+2 2.898 3.164 76% {[2+1]QRPA ⃰ [2+2]QRPA} + …. Ch. Stoyanov
3+ excited states Jπ State E (MeV) Transition strength EXP. QPM strength EXP. QPM Jπi → Jπf σλ B(σλ)exp B(σλ)QPM g e f f = 0.8 g free B(σλ)IBM 3+1 2.852 2.644 3+1→2+1 3+1→2+2 E2 M1 < 0.01 0.008(1) < 5.58 0.09 0.016 0.009 14.7 3+2 2.898 3.164 3+2→2+1 3+2→2+2 < 0.28 0.02(4) 0.078(14) 0.66 0.07 0.27 3.17 0.56 Ch. Stoyanov
4+ excited states structure Jπ E(MeV) EXP. QPM Structure,% 4+1 1.518 1.585 63% {[2+1]QRPA ⃰ [2+1]QRPA} + …. 4+2 2.462 2.207 61%[4+1]QRPA +13%{[2+1]QRPA ⃰ [2+1]QRPA} + 2.3% {[2+1]QRPA ⃰ [2+2]QRPA} +… 4+5 3.300 86% {[2+1]QRPA ⃰ [2+2]QRPA} + …. Ch. Stoyanov
4+ excited states Jπ State E (MeV) Transition strength EXP. QPM strength EXP. QPM Jπi → Jπf σλ B(σλ)exp B(σλ)QPM g e f f = 0.8 g f ree B(σλ)IBM 4+1 1.518 1.585 4+1→2+1 E2 22.6(17) 15 25.6 4+2 2.462 2.207 4+2→4+1 4+2→2+1 M1 0.90(18) 1.52(19) 0.07 5.5 1.13 1.44 4+5 3.300 1.6 1.8 Ch. Stoyanov
1+ excited states structure Jπ E(MeV) EXP. QPM Structure,% 1+1 3.154 3.118 93%{[2+1]QRPA ⃰ [2+2]QRPA} + .. Ch. Stoyanov
1+ excited states Jπ State E (MeV) Transition strength EXP. QPM strength EXP. QPM Jπi → Jπf σλ B(σλ)exp B(σλ)QPM g e f f = 0.8 g f ree B(σλ)IBM 1+1 3.154 3.192 1+1 →0+1 M1 0.17(6) 0.13 Ch. Stoyanov
Nuclear structure calculations in a large domain of excitation energies Conclusions There are two modes in the low-lying quadrupole excitations – isoscalar and isovector one. The properties of these two modes are close to IBM-2 symmetric and mixed-symmetry states. The coupling of the modes leads to variety of excited states. There are well pronounced regularities of E2 and M1 transitions connecting the states.
Thank You for Your attention!!! Nuclear structure calculations in a large domain of excitation energies Thank You for Your attention!!!