MEMPHYS non-oscillation physics

Slides:



Advertisements
Similar presentations
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Advertisements

Dark Matter Annihilation in the Milky Way Halo Shunsaku Horiuchi (Tokyo) Hasan Yuksel (Ohio State) John Beacom (Ohio State) Shin’ichiro Ando (Caltech)
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
Alessandro MIRIZZI Dip.to di Fisica & Sez. INFN, Bari, Italy SUPERNOVA NEUTRINO PHYSICS WITH A MEGATON DETECTOR NOW 2004 Neutrino Oscillation Workshop.
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
NNN /10/07 1 MEMPHYS MEgaton Mass PHYSics Detector N. Vassilopoulos / LAL on behalf of MEMPHYS Collaboration without LAGUNA aspects (L.Mosca) without.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Resolving neutrino parameter degeneracy 3rd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam Sep. 30 and Oct , Univ.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
The Earth Matter Effect in the T2KK Experiment Ken-ichi Senda Grad. Univ. for Adv. Studies.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
Hyper-Kamiokande project and R&D status Hyper-K project Motivation Detector Physics potential study photo-sensor development Summary Kamioka.
1 水质契仑科夫探测器中的中子识别 张海兵 清华大学 , 南京 First Study of Neutron Tagging with a Water Cherenkov Detector.
Unofficial* summary of the Long Baseline Neutrino Experiment (LBNE) physics workshop Seattle, Aug 9 to Aug 11 David Webber August 24, 2010 *Many studies/plots.
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
ESS based neutrino Super Beam for CP Violation discovery Marcos DRACOS IPHC-IN2P3/CNRS Strasbourg 1 10 September 2013M. Dracos.
PHY418 Particle Astrophysics
Takaaki Kajita ICRR, Univ. of Tokyo Nufact05, Frascati, June 2005 Based on reports at NNN05 Next generation of Nucleon decay and Neutrino detectors
Prospects of supernova neutrino observation by large detectors Hisakazu Minakata Tokyo Metropolitan University Hisakazu Minakata Tokyo Metropolitan University.
CP phase and mass hierarchy Ken-ichi Senda Graduate University for Advanced Studies (SOKENDAI) &KEK This talk is based on K. Hagiwara, N. Okamura, KS PLB.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
Solar Neutrino Results from SNO
Basudeb Dasgupta, JIGSAW 2007 Mumbai Phase Effects in Neutrinos Conversions at a Supernova Shockwave Basudeb Dasgupta TIFR, Mumbai Joint Indo-German School.
Hiroyuki Sekiya ICHEP2012 Jul 5 The Hyper-Kamiokande Experiment -Neutrino Physics Potentials- ICHEP2012 July Hiroyuki Sekiya ICRR,
Studies of Systematics for Dark Matter Observations John Carr 1.
Roma International Conference on Astroparticle Physics Rome, May 2013 Juan de Dios Zornoza (IFIC – Valencia) in collaboration with G. Lambard (IFIC) on.
23/11/05BENE meeting at CERN1 (22-25 November 2005) L. Mosca (CEA-Saclay) The MEMPHYS project MEgaton Mass PHYSics in a Large International Underground.
Supernovas Neurino Signals in WATCHMAN Mark Vagins UC Irvine/Kavli IPMU 4 th Full WATCHMAN Collaboration Meeting UC Davis October 29, 2014.
Marcos DRACOS IPHC-IN2P3/CNRS Université de Strasbourg
Waseda univ. Yamada lab. D1 Chinami Kato
Imaging the Neutrino Universe with AMANDA and IceCube
DM searches with the ANTARES neutrino telescope
Jonathan Davis King’s College London
IPHC-IN2P3/CNRS Strasbourg
Projjwal Banerjee (UC Berkeley) with
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
The Diffuse Flux of Supernova Neutrinos
SOLAR ATMOSPHERE NEUTRINOS
Solar & Supernova Neutrinos Detection Methods and Prospects
Physics with the ICARUS T1800 detector
Building ICECUBE A Neutrino Telescope at the South Pole
SOLAR ATMOSPHERE NEUTRINOS
Diffuse neutrino flux J. Brunner CPPM ESA/NASA/AVO/Paolo Padovani.
Probing the Broken - Symmetry with Neutrino Telescopes
Neutrinos as probes of ultra-high energy astrophysical phenomena
Neutrino astrophysics
The neutrino mass hierarchy and supernova n
Toward realistic evaluation of the T2KK physics potential
Davide Franco for the Borexino Collaboration Milano University & INFN
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Low Energy Neutrino Astrophysics
Presentation transcript:

MEMPHYS non-oscillation physics NOW 2006 - Conca Specchiulla 9-16/09/06 MEMPHYS non-oscillation physics Alessandra Tonazzo APC et Université Paris 7

Laboratoire Souterrain de Modane Contacts: J.E.Campagne and M.Mezzetto The MEMPHYS detector [see talk by S.Katsanevas] Modane, France Laboratoire Souterrain de Modane Megaton Mass PHYSics @Fréjus Water Cherenkov (“cheap and stable”) Total fiducial mass: 440 kt Baseline: 3 Cylindrical modules 65X65 m Size limited by light attenuation length (λ~80m) and pressure on PMTs Readout: 12” PMTs, 30% geom. cover (#PEs =40%cov. with 20” PMTs) PMT R&D + detailed study on excavation existing & ongoing Frejus Tunnel 4800 m.w.e. Bardonecchia, Italy 65m 60m http://www.apc.univ-paris7.fr/APC_CS/Experiences/MEMPHYS/ arXiv: hep-ex/0607026 Contacts: J.E.Campagne and M.Mezzetto NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

Physics goals (=outline of my talk) SuperNovae core-collapse Early SN trigger Diffuse SuperNovae Neutrinos Astrophysical sources of neutrinos Proton decay Oscillation measurements with  beams [see talk by T.Schwetz] NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

SN neutrinos @ detector n emission Flavor conversion Shock wave EARTH [slide “stolen” from A.Mirizzi] Core Collapse Event rate spectra f : from simulations of SN explosions P : from n oscillations + simulations (density profile) s : (well) known e : under control [see talk by Cardall] NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

SN neutrinos Neutronization burst Accretion + K-H cooling [see talk by Cardall] Neutronization burst E~1051 erg t~25 ms Accretion + K-H cooling E~1053 erg t~10 s 99% of total explosion energy Propagation to Earth: Matter effects Pee(12) Level-crossing probability PH(E, V(x,t), m2,13) Survival prob. p= Pee*PH “Sensitivity to θ13 one order of magnitude better than planned terrrestrial experiments” [see for ex. Lunardini-Smirnov hep-ph/0302033] Hierarchy of interaction strength  Fogli et al., hep-ph/0412046 Raffelt et al., astro-ph/0303226 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

Detection of SN neutrinos Inverse-beta (89%) Large statistics in detectors with lots of free p Good determination of  time and energy Option: add Gd to tag neutron from delayed-γ Elastic scattering (~3%) Pointing NC on Oxygen (8%) n g [see talk by Vagins] e- ne,x Fogli et al., hep-ph/0412046 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

A.Tonazzo - MEMPHYS: non-oscillation physics SN @ MEMPHYS Evidence up to ~1Mpc Galactic SN: Huge statistics  we can do spectral analyses in time in energy in flavour composition  Access to SN explosion mechanism: shock waves, neutronization burst Neutrino production parameters: rate, spectra Neutrino properties (a partial overview in the following) Fogli et al., hep-ph/0412046 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

SN spectral analyses (1) Extracting the astrophysical parameters Learning about black-hole formation Abrupt cut-off of neutrino flux visible if a black-hole forms in the middle of a SN explosion Just an example (“old” paper) to get a feeling of the sensitivity w.r.t. smaller detectors Minakata et al., hep-ph/0112160 from UNO whitepaper NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

SN spectral analyses (2) Learning about the shock wave Crossing of resonances can induce time-dependent matter effects in neutrino oscillations Shock-wave effects on survival probabilities (PH) depend on 13. m2atm,13 m2sol,sol  self-interactions ? Duan et al., 0606616 Raffelt et al., 0608050 Schirato and Fuller, astro-ph/0205390 Fogli et al., hep-ph/0304056 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

SN spectral analyses (2) Learning about the shock wave “Double-dip” in <Ee> “Double-peak” in <E2e>/<Ee>2 vs time Time-dips are Energy-dependent: Compare bins of “low” and “high” E Fogli et al., hep-ph/0412046 Forward shock Forward+Reverse shock IH shock IH static NH For NH, some information can be gathered from time-spectrum of e+O events Tomas et al., astro-ph/0407132 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

SN spectral analyses (2’) Stochastic density fluctuations behind the shock front can have significant damping effects on the transition pattern and modify the observed spectrum Fogli et al., hep-ph/0603033  = fractional (random) variations of average  potential NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

SN spectral analyses (3) Earth matter effects Dighe et al., hep-ph/0311172 Modulations of energy spectrum of and/or Observable with a single detector in Fourier-transform of y~1/E In water-Cherenkov, due to poor energy resolution, need >60k events: OK @Mton For Earth effect not seen  Inverted Hierarchy + large θ13 Earth effect seen  Degeneracy: NH or IH+small θ13 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

SN spectral analyses (4) Neutronization burst Kachelrieβ et al., astro-ph/0412082 Signal: Bkg: mainly rejected by angle and E cuts + Gd n-tag ES of other  flavours Observation of time peak depends on oscillation scenario Burst / no-burst  break degeneracy A/C if θ13 unknown Measurement of SN distance D~1/N1/2 @10kpc within 5% NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

A.Tonazzo - MEMPHYS: non-oscillation physics SN trigger Detection of SN from galaxies up to ~10Mpc Coincidence of two neutrinos in the same detector within ~10sec Bkg <0.7 ev/yr Rate > 0.15/yr  Identify SN without optical confirmation (= anticipate by few hrs)  Detect SN heavily obscured by dust or optically dark Neutrino-Optical coincidence  improve knowledge of start time of core collapse from ~1day (optical) to ~10s @Mton RSN @SK Ando et al., astro-ph/0503321 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

Diffuse SN neutrinos We don’t need to wait and hope to be lucky… [see talk by C.Lunardini] (thanks for these slides!) Lunardini, astro-ph/0509233 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

Diffuse SN ’s @H2O detectors Small signal over very large bkg: Decay e from “invisible ” generated by CC interaction of -atm and with E<Cherenkov threshold atmospheric e Reactor (E<~10 MeV) Can be reduced with Gd (reject non- anti-e ) Malek et al. [SK Coll.], hep-ex/0209028 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

Diffuse SN ’s @ MEMPHYS We WILL see them in few years Direct measurement of  emission parameters 5y SK+Gd =1y MEMPHYS+Gd Fogli et al., hep-ph/0412046 7-60 events in 4 yrs: “most conservative” estimate by C.Lunardini What can we learn ? astro-ph/0509233 Yuksel et al., astro-ph/0509297 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

Diffuse SN ’s @ MEMPHYS Decays of DSN modifications of spectrum Constraints on Dark Energy parameters +estimate of SN rate from future SN surveys 10 y with Gd Mirizzi et al., hep-ph/0405136 Hall et al., hep-ph/0607109 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

Neutrino astrophysics Low-E ’s from GRB accompanying UHE-’s and optical emission seen in other experiments “GRB  background” detectable in few years ’s from Black-Hole formation death of stars with M>40Msun ’s from interaction of ’s “from below” Point-sources, such as AGNs WIMPs annihilating in Earth, Sun or Galaxy [cfr SK analysis: hep-ex/0404025] High-E ’s from GRBs Nagataki et al., astro-ph/0203481 Sumiyoshi et al., astro-ph/0608509 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

A.Tonazzo - MEMPHYS: non-oscillation physics Proton decay Complete review: Nath and Perez, hep-ph/0601023 Forbidden in SM Non-SUSY GUTs (dim-6 operators) Favours p  e+ 0 Predictions: p~1034-1036 yrs Predictions depend only on fermion mixing SUSY GUTs (dim-4 and dim-5 operators) Favours p  K+ nu-bar Predictions: p~3x1033-3x1034 yrs Predictions depend on SUSY particle spectrum, Higgs sector and fermion masses (note interplay with direct searches @LHC) Current limits by SuperKamiokande: p  K+ nu-bar p>2.3x1033y p  e+ 0 p>1.6x1033y Complementarity of the two main decay channels No dedicated study done for MEMPHYS: rely on UNO simulation results (see UNO whitepaper) NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

A.Tonazzo - MEMPHYS: non-oscillation physics Proton decay Search for p  e+ π0 Main bkg: Ask: 2 or 3 “e-like” rings, Ptot<PFermi, Minv~Mp => Eff. ~44% MEMPHYS coverage 30% with 12”PMTs is equivalent to SK coverage 40% with 20”PMTs in terms of #PE H2O is best for this channel MEMPHYS XXX XXX MEMPHYS From UNO whitepaper NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

Proton decay Search for p  K+ + anti- K below Ch. Threshold : infer from decays 90% of K decay at rest K decay channels: K   monoenergetic  + 6.3 MeV prompt- from capture K  +0 with  H2O is not as good as LAr, LScint for this channel NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

A.Tonazzo - MEMPHYS: non-oscillation physics Summary and outlook MEMPHYS - Megaton Mass PHYSics @ Fréjus Supernova Explosion Evidence up to 1 Mpc Spectral analyses  information on explosion mechanism,  emission and propagation Diffuse Supernova Neutrinos Evidence within few years Information on  emission parameters and more Early SN trigger Neutrino astrophysics Proton decay: Optimal detector for p  e+ π0 Important synergies with LAr, LiqScint  LAGUNA NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

BACKUP

SN spectral analyses (2) Learning about the shock wave: Normal Hierarchy NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

A.Tonazzo - MEMPHYS: non-oscillation physics SN187A by Lunardini NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

A.Tonazzo - MEMPHYS: non-oscillation physics SN1987A Yukserl et al., astro-ph 0509297 Other analyses: Jegerlehner et al., PRD 54 (1996) 1194 Lunardini, astro-ph/0509233 (5-par fit) NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics

SN spectral analyses (2) Learning about the shock wave Time-dips are Energy-dependent: Compare bins of “low” and “high” E “Double-dip” in <Ee> “Double-peak” in <E2e>/<Ee>2 vs time Fogli et al., hep-ph/0412046 Tomas et al., astro-ph/0407132 NOW06 15/09/06 A.Tonazzo - MEMPHYS: non-oscillation physics