Scheme for the large full custom cell

Slides:



Advertisements
Similar presentations
The Embedded Compression Dump OCI Investigations.
Advertisements

Z. Stamenković 1, M. Giles 2, and F. Russi 2 1 IHP GmbH, Frankfurt (Oder), GERMANY 2 Synopsys Inc., Mountain View, CA, USA 13th IEEE European Test Symposium,
BOUNDARY SCAN.
COEN 180 SRAM. High-speed Low capacity Expensive Large chip area. Continuous power use to maintain storage Technology used for making MM caches.
Lecture 28 IEEE JTAG Boundary Scan Standard
Decoder* CentroidingNon-Centroiding Transistor matching (small transistors) Transistor matching (large transistors) Addr b Iref Iout b Iref DAC en_out.
SiliconAid Solutions, Inc. Confidential SAJE SiliconAid JTAG Environment Overview – Very Short.
Interconnection and Packaging in IBM Blue Gene/L Yi Zhu Feb 12, 2007.
111 Target Hardware Debug ULINK2 and ULINK-ME Including Real-Time Agent.
STATUS OF THE CRESCENT FLEX- TAPES FOR THE ATLAS PIXEL DISKS G. Sidiropoulos 1.
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
PCB layout issues PCB alignment and spacing MMM meeting, 22/01/2014G. Sekhniaidze/ J. Wotschack1.
® ChipScope ILA TM Xilinx and Agilent Technologies.
Choosing the right preamplifier/discriminator comparing advantages and drawbacks : NL-277-L (Nanometrics), ASD-8 (Cern) and MAD4 (INFN Italy) Our favorite:
CALICE meeting Prague 2007, Hervé MATHEZ 1 DHCAL PCB STUDY for RPC and MicroMegas (Electronics recent developments for the European DHCAL) William TROMEUR,
ASIC1  ASIC2 Things still to learn from ASIC1 Options for ASIC 1.01  1.1  1.2 Logic test structure for ASIC2.
Large Area Endplate Prototype for the LC TPC 1 D. Attié, P. Baron, D. Calvet, P. Colas, C. Coquelet, E. Delagnes, M. Dixit, A. Le Coguie, R. Joannes, S.
EP/ED group meeting1 ALICE PIXELS DETECTOR.
ECE 553: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTEMS Boundary Scan.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Tera-Pixel APS for CALICE Jamie Crooks, Microelectronics/RAL SRAM Column Concept.
1 NIU Integrated Readout Layer Kurt Francis NICADD Northern Illinois University March 19, 2014.
April 20, 2001VLSI Test: Bushnell-Agrawal/Lecture 281 Lecture 28 IEEE JTAG Boundary Scan Standard n Motivation n Bed-of-nails tester n System view.
Punctuation and Vertical Columns From Lessons in SignWriting Web Gallery
Proposal for the assembly of the PHOBOS ring counters (H.P. 3/20/98) I would like to propose and discuss with you an alternative layout and assembly procedure.
Pixel detector development: sensor
Terra-Pixel APS for CALICE Progress meeting 10 th Nov 2005 Jamie Crooks, Microelectronics/RAL.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
Laboratoire de l’Accélérateur Linéaire (IN2P3-CNRS) Orsay, France Olivier Duarte December th 2009 LHCb upgrade meeting Tests Front-end Status  Necessity.
Juin 1st 2010 Christophe Beigbeder PID meeting1 PID meeting Electronics Integration.
UPDATE ON CLICPIX2 DESIGN Pierpaolo Valerio Edinei Santin
Software for tests: AMB and LAMB configuration - Available tools FTK Workshop – Pisa 13/03/2013 Daniel Magalotti University of Modena and Reggio Emilia.
System Demonstrator: status & planning The system demonstrator starts as “vertical slice”: The vertical slice will grow to include all FTK functions, but.
AM chip schedule Alberto. Design activities (17/11/2010) Adapt JTAG and bounday scan to MPW chip Design new CAM cells, Buffer logic New logic majority.
Low Power, High-Throughput AD Converters
Status of FTK & requests 2013 Paola Giannetti, INFN Pisa, for the FTK Group ATLAS Italia, Sep 5, 2012 Status of FTK work IMOU NEWS & Future steps TDR with.
AMBFTK Report AMBFTK: problems to solve Power distribution: Crates – compatibility with CDF crates? Thermal dissipation: Cooling Signals I/O:
Alberto Stabile 1. Overview This presentation describes status of the research and development of main boards for the FTK project. We are working for.
New AMchip features Alberto Annovi INFN Frascati.
The AMchip on the AMBoard Saverio Citraro PhD Student University of Pisa & I.N.F.N. Pisa.
MADEIRA Valencia report V. Stankova, C. Lacasta, V. Linhart Ljubljana meeting February 2009.
Outline The Pattern Matching and the Associative Memory (AM)
AVR JTAG Interface The JTAG (Joint Test Action Group) development started about 1985 as a method to test populated circuit boards after manufacture. The.
IAPP - FTK workshop – Pisa march, 2013
FTK: update on progress, problems, need
The Associative Memory – AM = Bingo
LHC1 & COOP September 1995 Report
LAMB: Hardware & Firmware
APSEL6D Architecture, simulations and results
Digital readout architecture for Velopix
AVR JTAG Interface The JTAG (Joint Test Action Group) development started about 1985 as a method to test populated circuit boards after manufacture. The.
2018/6/15 The Fast Tracker Real Time Processor and Its Impact on the Muon Isolation, Tau & b-Jet Online Selections at ATLAS Francesco Crescioli1 1University.
TDC per 4 pixels – End of Column Approach
Christophe Beigbeder PID meeting
Full Custom Associative Memory Core
Large Area Endplate Prototype for the LC TPC
Meeting at CERN March 2011.
8 Input Layers (14b+2ctrl=16 b) = 8 coppie LVDS
Test Slab Status CALICE ECAL test slab: what is it all about?
Bus update after meeting of 11/11
LAB #1 Introduction Combinational Logic Design
Amchip04 with umc90 std cells
CPE/EE 428/528 VLSI Design II – Intro to Testing (Part 3)
Tables:.
Station and Module Support Frames
Silicon pixel detectors and electronics for hybrid photon detectors
Jean-Francois Genat – Herve Grabas Mary Heinz – Eric Oberla
SALTRO16 activities in Lund
2-2 Logic Part 2 Truth Tables.
Preliminary design of the behavior level model of the chip
Presentation transcript:

Scheme for the large full custom cell LAYER Full custom design How large is the 32 pattern super-cell? It is 1.8*23=57.6 microns tall. Do we want integrate the majority logic with the pattern logic? Majority Full custom design Readout Logic 32 patterns = full custom cell

3.46 mm ? & pattern organization in the 12 mm^2 -pad florplanning – power distribution 3 .46 mm ? 435um + current source + amplifier + majority logic How many Super-cells in a column? How much Space for readout? Two faced pattern columns with readout in the middle How many couples of colums of Super-cells in X?

External: new proposed pin-out symmetric for 156 vcc_IO 155 NC 154 pattB16 153 Bus3_6 152 Bus3_5 151 SAin_Low 150 Vcc_core 149 Bus3_4 148 Bus3_3 147 Bus3_2 146 Bus3_1 145 Da_out 144 WiredDA_low 143 gnd 142 Bu3_0 141 pattB15 138 debug_0 137 pattB14 136 pattB13 135 pattB12 134 pattB11 133 pattB10 132 pattB9 131 gnd 130 Vcc_IO 129 pattB8 128 pattB7 127 pattB6 126 pattB5 125 pattB4 124 pattB3 123 Debug_1 120 PattB2 119 pattB1 116 Bus1_0 115 Bus1_1 114 Bus1_2 113 Bus1_3 112 Bus1_4 111 Bus1_5 110 Bus1_6 109 Bus1_7 108 OPcode2 107 OPcode3 106 NC 105 Vcc_IO vcc_core Debug_2 Vcc_IO gnd PattB0 1 Gnd 2 Bus7_11 Vcc_core Bus7_07 36 Bus7_06 Opcode1 3 SA_out 4 Bus2_6 5 Bus2_5 Bus2_4 Bus2_3 Bus2_2 Bus2_1 Bus2_0 Bus7_10 Bus7_09 Bus7_08 pattA13 Opcode0 Vcc_io pattA12 pattA11 pattA10 41 Bus0_0 Bus0_1 Bus0_2 Bus0_3 Bus0_4 Bus0_5 Bus0_6 Bus0_7 DA_in pattA9 pattA8 pattA7 pattA6 pattA5 pattA4 pattA3 pattA2 37 pattA1 39 pattA0 40 Init_ev TDI Gnd 38 gnd 156 Gnd 155 Bus6_11 154 SA_in 153 Bus3_6 152 Bus3_5 151 TDO 150 Bus3_4 149 Bus3_3 148 Bus3_2 147 Bus3_1 146 Bus3_0 145 Da_out 144 Gnd 143 vcc_core 142 Bus6_10 141 Bus6_9 140 Bus6_8 139 vcc_IO 138 Bus6_7 137 pattB13 136 pattB12 135 pattB11 132 gnd 131 Vcc_IO 130 pattB8 129 pattB7 128 pattB6 127 pattB5 126 pattB4 125 pattB3 124 Vcc_IO 123 Vcc_core 122 PattB2 121 BUS6_6 120 pattB1 119 gnd 118 PattB0 117 TMS 116 Bus1_0 115 Bus1_1 114 B 113 Bus1_3 112 Bus1_4 111 Bus1_5 110 Bus1_6 109 Bus1_7 108 OPcode2 107 OPcode3 106 Gnd 105 Vcc_IO pattB10 pattB9 Vcc_IO 103 Bus6_5 Bus6_4 Bus1_8 Bus1_9 99 Bus1_10 98 Bus1_11 97 Bus1_12 96 Bus1_13 95 Bus1_14 94 Bus6_3 93 Bus6_2 92 Bus6_1 91 Gnd 90 Bus6_0 89 88 Bus5_14 87 Bus5_13 86 Vcc_core 85 Bus5_12 84 Bus5_11 83 Bus5_10 82 Bus5_9 81 Bus5_8 80 gnd 79 clk 78 clk 77 gnd 76 Bus5_7 75 Bus5_6 74 Bus5_5 73 Bus5_4 72 Bus5_3 71 Vcc_core 70 Bus5_2 69 Bus5_1 68 Bus5_0 67 Bus7_00 66 gnd 65 Bus7_01 64 Bus7_02 63 Bus7_03 62 Bus0_14 61 Bus0_13 60 Bus0_12 59 Bus0_11 58 Bus0_10 57 bus0_9 56 Bus0_8 55 Bus7_04 54 Bus7_05 53 Vcc_io Vcc_IO Vcc_core Bus3_7 Bus3_8 Bus3_9 Bus3_10 Bus3_11 Bus3_12 Bus3_13 Bus3_14 Bus6_12 Bus6_13 Gnd Bus6_14 172 rev_en_low Bus4_14 Bus4_13 Bus4_12 Bus4_11 Bus4_10 Bus4_09 Bus4_8 Bus4_7 TCK Bus4_6 Bus4_5 Bus4_4 Bus4_3 Bus4_2 Bus4_1 Bus4_0 rev_en_low Bus7_14 Bus7_13 Bus7_12 Bus2_14 Bus2_13 Bus2_12 Bus2_11 Bus2_10 Bus2_09 bus2_08 Bus2_07 Vcc_io 36 JTAG_RES pattaA15 2 pattA16 Vcc_core 3 SA_out 4 Bus2_6 5 Bus2_5 Bus2_4 Bus2_3 Bus2_2 Bus2_1 Bus2_0 pattA14 Vcc_IO pattA13 Opcode0 pattA12 pattA11 pattA10 pattA9 Vcc_io 41 Bus0_0 Bus0_1 Bus0_2 Bus0_3 Bus0_4 Bus0_5 Bus0_6 Bus0_7 DA_in pattA8 pattA7 pattA6 pattA5 pattA4 pattA3 pattA2 37 pattA1 39 pattA0 40 Init_ev 1 Gnd TDI TCK Gnd TMS 38 gnd External: new proposed pin-out symmetric for Mirroring around horizontal azis through 79-78 pins. Internally reported old chip pinout to evaluate movements Other side

The CDF final AMchip architecture Pattern bank Add encoder kill Bus0[17:0] Bus1[17:0] Bus2[17:0] Bus3[17:0] Bus4[17:0] Bus5[17:0] 14:0 →3x6=18 free 15 for new bus + 3 free 13:0 13:0 → 4 bits x 2=8 free

Summary of AMchip pinout Bus0[17-3:0] Bus5[17-3:0] Bus6-7[14:0] Bus0[17:0] Rev-en_ Debug[2:0] patt_add_a[17-4:0] patt_add_b[17-4:0] -1 Wired_da_ SA-out_ SA-in_ DA-in_ DA-out_ TOT FREE=30: 18+8+2+ 2NC pads -1 Opcode[3:0] Init clk

Packaging chips together in the LAMB add_in add_out Pipelines of AM chips AMchip Control = GLUE

AMTOP Bus0 Bus1 Bus3 Bus2 AMBOTTOM Bus5 Bus4 add_in add_out LAMB AM INDI AMTOP Bus0 Bus1 Bus3 Bus2 AMBOTTOM Bus5 Bus4 PAT_ADD_IN [17:0] PAT_ADD_OUT REV_EN add_in add_out LAMB

Case (1) Patt_add_in Patt_add_out up Patt_add_out Patt_add_in down Patt_add_in (or TDI, or SA_in…..) Patt_add_out (or TDO or SA_out….) up Case (2) Patt_add_in Patt_add_out Patt_add_in mirrored Patt_add_out Patt_add_in up

OLD Pin_out as in CDF AMchip03 156 vcc_IO 155 NC 154 pattB16 153 Bus3_6 152 Bus3_5 151 SAin_Low 150 Vcc_core 149 Bus3_4 148 Bus3_3 147 Bus3_2 146 Bus3_1 145 Da_out 144 WiredDA_low 143 gnd 142 Bu3_0 141 pattB15 138 debug_0 137 pattB14 136 pattB13 135 pattB12 134 pattB11 132 pattB9 131 gnd 130 Vcc_IO 129 pattB8 128 pattB7 127 pattB6 126 pattB5 125 pattB4 124 pattB3 123 Debug_1 120 PattB2 119 pattB1 116 Bus1_0 115 Bus1_1 114 Bus1_2 113 Bus1_3 112 Bus1_4 111 Bus1_5 110 Bus1_6 109 Bus1_7 108 OPcode2 107 OPcode3 106 NC 105 Vcc_IO vcc_core pattB10 Debug_2 Vcc_IO gnd PattB0 TDO gnd Bus3_7 pattB17 Bus3_8 Bus3_9 Bus3_10 Bus3_11 Bus3_12 Bus3_13 Bus3_14 Bus3_15 Bus3_16 Gnd Bus3_17 Bus4_17 Vcc_core Bus4_16 Bus4_15 Bus4_14 Bus4_13 Bus4_12 Bus4_11 Bus4_10 Bus4_09 Gnd p Vcc_IO Bus4_8 Bus4_7 Bus4_6 Bus4_5 Bus4_4 Bus4_3 Bus4_2 Bus4_1 Bus4_0 Bus2_17 Bus2_16 Bus2_15 Bus2_14 Bus2_13 Bus2_12 Bus2_11 bus2_10 Bus2_09 Bus2_08 Bus2_07 NC 103 gnd Opcode_1 Bus1_8 Bus1_9 99 Bus1_10 98 Bus1_11 97 Bus1_12 96 Bus1_13 95 Bus1_14 94 Bus1_15 93 Bus1_16 92 Bus1_17 91 Gnd 90 Bus5_17 89 Bus5_16 88 Bus5_15 87 Bus5_14 86 Vcc_core 85 Bus5_13 84 Bus5_12 83 Bus5_11 82 Bus5_10 81 Bus5_9 80 clk 79 gnd 78 Vcc_IO 76 Bus5_8 75 Bus5_7 74 Bus5_6 73 Bus5_5 72 Bus5_4 71 Vcc_core 70 Bus5_3 69 Bus5_2 68 Bus5_1 67 Bus5_0 66 gnd 65 Bus0_17 64 Bus0_16 63 Bus0_15 62 Bus0_14 61 Bus0_13 60 Bus0_12 59 Bus0_11 58 Bus0_10 57 bus0_9 56 Bus0_8 55 Vcc_core 54 rev_en_low 53 Vcc_io OLD Pin_out as in CDF AMchip03 The green pads are holes that can be filled by the 2 new bases. 36 JTAG_RES pattaA15 2 pattA16 Vcc_core 3 SA_out 4 Bus2_6 5 Bus2_5 Bus2_4 Bus2_3 Bus2_2 Bus2_1 Bus2_0 pattA14 Vcc_IO pattA13 Opcode0 pattA12 pattA11 pattA10 pattA9 Vcc_io 41 Bus0_0 Bus0_1 Bus0_2 Bus0_3 Bus0_4 Bus0_5 Bus0_6 Bus0_7 DA_in pattA8 pattA7 pattA6 pattA5 pattA4 pattA3 pattA2 37 pattA1 39 pattA0 40 Init_ev 1 Gnd TDI TCK Gnd TMS 38 gnd