Thermal review of CLIC module

Slides:



Advertisements
Similar presentations
CLIC two-beam module integration issues 4 th CLIC Advisory Committee (CLIC-ACE), May 26-28, 2009 CLIC two-beam module integration issues G. Riddone on.
Advertisements

Laboratori Nazionali di Legnaro (Italy) DTL design status A. Pisent.
Alignment of DB and MB quadrupoles Hélène MAINAUD DURAND 17/11/2011 With a lot of input from Sylvain GRIFFET.
LCWS12, 25/10/ CLIC two-beam module development Status and future plans G. Riddone Outlook Short introduction CLIC Module Validation program Future.
TMM of the CLIC Two-Beam Module T0 in the LAB – Proceedings to structural FEA Riku Raatikainen
Influence of the Gravity, Vacuum and RF on CLIC Module T0 Behavior R. Raatikainen.
Vacuum, Surfaces & Coatings Group Technology Department Vacuum tests for CLIC module prototypes 6 November 2013 C. Garion2 Outline: Reminder: specification.
Powering the main linac implications Daniel Siemaszko, Serge Pittet OUTLINE : Cost impact of power converters, power consumption and powering.
Status of vacuum & interconnections of the CLIC main linac modules C. Garion TE/VSC TBMWG, 9 th November 2009.
Heat load study of cryomodule in STF
INTEGRATION OF RF STRUCTURES IN THE TWO-BEAM MODULE DESIGN G. Riddone, CERN, Geneva, Switzerland A. Samoshkin, D. Gudkov, JINR, Dubna, Russia Abstract.
CTC, Two-beam module program (WP CTC-004) CLIC Modules (boundary conditions, technical system design and integration) CDR modules Prototypes.
1/12 Sylvain GRIFFET, 17/10/2011 BE/ABP-SU/ Simulations of laser tracker AT401 measurements on TM0 CLIC girders EDMS Document No
06-November-2013 Thermo-Mechanical Tests BE-RF-PM Review of the CLIC Two-Beam Module Program Thermo-Mechanical Tests L. Kortelainen, I. Kossyvakis, R.
1 Updates on thermal tests Updates on thermal tests F. Rossi September 5, 2012.
1 Status of the CLIC two-beam module program A. Samochkine, G. Riddone Acknowledgements to the Module WG members 4 February 2014 CLIC Workshop 2014 (3-7.
D. Gasser ST/CV 1 Fluid distribution from UW85 Fully available now.
CLIC Prototype Test Module 0 Super Accelerating Structure Thermal Simulation Introduction Theoretical background on water and air cooling FEA Model Conclusions.
Cost Model including Civil Engineering and Conventional Facilities Hans-H. Braun, CLIC ACE, June 20, 2007  Cost model goals  Methodology  Scaling assumptions.
CLIC cost & power consumption issues Philippe Lebrun on behalf of the C&S WG CLIC Meeting 11 December 2009.
CTC, Outcome from Two-beam Module Review on15/ G. Riddone,
CLIC08 workshop CLIC module layout and main requirements G. Riddone, on behalf of the CMWG Home page of the TBM WG:
CLIC cost drivers Philippe Lebrun on behalf of the C&S WG CLIC Technical Committee 3 November 2009.
Test plan for SPL short cryomodule O. Brunner, W. Weingarten WW 1SPL cryo-module meeting 19 October 2010.
CLIC Module WG 20/07/2009 H. MAINAUD DURAND, BE-ABP/SU Pre-alignment system and impact on module design.
1 Heaters for the cooling system tests (lab modules) A. Samoshkin Last update 04-Apr-2011.
COOLING & VENTILATION FOR THE DRIVE BEAM TUNNEL M Nonis – EN/CV – 16/9/2009 CLIC TWO BEAM MODULES REVIEW
1 Thermal tests planning for mock-up TM0 Thermal tests planning for CLIC prototype module type 0 May 30th,
CLIC Workshop th -17 th October 2008 Thomas Zickler AT/MCS/MNC 1 CLIC Main Linac Quadrupoles Preliminary design of a quadrupole for the stabilization.
CLIC two-beam modules TEST modules final schemes Dmitry Gudkov BE/RF CLIC Module Working Group.
cern.ch 1 A. Samoshkin 28-Feb-2011 Progress on CDR module design.
cern.ch International Workshop on Linear Colliders 2010 CLIC TWO-BEAM MODULE DESIGN & INTEGRATION 21-Oct-2010 WG 8 «TECHNICAL SYSTEMS»
Updated Thermo-Mechanical Model of the CLIC Two-Beam Module Riku Raatikainen
CLIC Stabilisation Day’08 18 th March 2008 Thomas Zickler AT/MCS/MNC/tz 1 CLIC Quadrupoles Th. Zickler CERN.
cern.ch CLIC MEETING (17-Dec-2010) CLIC TWO-BEAM MODULE LAYOUT (short introduction) BE / RF 1.
Peak temperature rise specification for accelerating structures: a review and discussion CLIC meeting
CLIC meeting CLIC module status G. Riddone on behalf of the CLIC Module WG,
CLIC workshop ”Two beam hardware and integration” working group Module layout and main requirement G. Riddone, A. Samoshkin
Risto Nousiainen, CLIC workshop ” Technical Issues, Integration & Cost ” working group Progress on Study of Module Cooling Risto Nousiainen.
CLEX TBM T0 Cooling system Design strategy 1 V. Soldatov, A. Vamvakas, BE-RF
Alignment system and impact on CLIC two-beam module design H. Mainaud-Durand, G. Riddone CTC meeting –
1 [24-July-2013] [CMWG] «BE-RF-PM» CLIC TBM Prototypes Status EDMS №[Number] Dmitry Gudkov 1.
1 12-February-2014 BE-RF-PM CLIC MODULE Preparation for the duty cycles Written by: Elena Daskalaki Checked by: Alexander Samochkine Approved by: Germana.
Dmitry Gudkov BE/RF CLIC Module Working Group Test Module Type 1 (LAB). Design and integration. 3D model Ref: ST
Energy consumption and savings potential of CLIC Philippe Lebrun CERN, Geneva, Switzerland 55th ICFA Advanced Beam Dynamics Workshop on High Luminosity.
BRAINSTORMING ON LASER BASED SOLUTIONS FOR CLIC PRE-ALIGNMENT INTRODUCTION Hélène MAINAUD DURAND, BE/ABP/SU, 09/02/2010 Status of the study CLIC pre-alignment.
CTC Work Packages ver 2.1 HS for CTC. CTC-001SC wigglers Cooling design, hor. or ver. Racetrack coil Nb3Sn or NbTi cable Prototypes construction Experimental.
Module layout and types Two-beam module review, September 2009 Module layout and types G. Riddone for the CMWG,
Status of the CLIC module R&D G. Riddone on behalf of the CLIC module WG (special contributions from A. Samoshkin, D. Gudkov, A. Solodko, N. Gazis)
Two-beam module layout
08:30 Development of nanometer electron beam size monitor
CLIC Parameter Working Group Two Beam Module Design
Update on the DB Girders FE Analyses
Sub-system integration for the VBOX
CLIC module working group
Alignment methods developed for the validation of the thermal and mechanical behavior of the Two Beam Test Modules for the CLIC project Hélène MAINAUD.
Thermal-Structural Finite Element Analysis of CLIC module T0#2
Thermal-Structural Finite Element Analysis of CLIC module T0#2
CLIC Common RF-girder study
Module roadmap to end of 2017
The path to a new CLIC main-linac module
M. Alcaide Leon, Paolo Fessia
List of changes and improvements for the next generation CLIC module
TBM thermal modelling status
Installation plan for LAB modules
COOLING & VENTILATION INFRASTRUCTURE
LCWS 2017 – 26th October C. Rossi
Experimental program for module array
Thermal test (lab modules)
Undulator Hall Power Dissipation
Presentation transcript:

Thermal review of CLIC module M. Aicheler 03.03.2017

Module power Very nice work prior to CDR: Two-beam module: estimated power dissipation (EDMS# 910399) (last update from 23.11.2010) All calculations are taking total power of linac divided by length Update to todays technology and knowledge

Heat sources in Tunnel: Module Transfer lines Magnets Vacuum pumps Instrumentation Cables (including kickers) Cables for turnarounds? Cables for DB dumps? …

duty cycle % [before operation] Alignment system H. Mainaud-Durand (values updated on 03.06.2010) Movers girders Movers MBQ   108 W/girder [12 W/st. Motor] 60 W/MBQ [12 W/st. motor] 5% duty cycle % duty cycle % [before operation] 12366 No girder MB 1996 No Q 10370 No. girder DB 122774.4 W [Tot per linac] 5988 W [Tot per linac before operation] 5115.6 W [Tot per DB sector] 249.5 Total Girders + MBQ 128.7624 kW [Tot per linac] to air 5.4 kW [Tot per DB sector]

Beam Instrumentation system L. Soby (values updated on 03.06.2010) BPM Clarification / unit   13 W/BPM 1996 No BPM MB 15555 No. BPM DB 228163 W [Tot per linac] 9507 W [Tot per DB sector] Total BPM 228 kW [Tot per linac] to air 10 kW [Tot per DB sector]

Vacuum system C. Garion (values updated on 29.07.2009)   For the main linac (1 vacuum sector: ~200m, 4 sectors per DB sector): -          1 ionic pump/module/beam; 1 alimentation of 150W for 5 pumps ==> 3kW/sector/beam -          1 penning gauge/module/beam; 1 alimentation of 50W for 4 gauges ==> 1.25 kW/sector/beam -          8 mobile TM station/sector ==> 8 kW/sector (during conditiong only) -          NEG cartridge: 200 W/module ==> 20 kW/sector (during conditioning only) Totals Main linac conditioning operation N/A kW [Tot per linac] 408 to air 112 kW [Tot per DB sector] 17

total power - cables [W] Magnet system and magnet powering system M. Modena D. Siemaszko (values updated on 07.07.2010)   MB total power - coils [W] total power - cables [W] number per linac MB Type 1 890 154 MB Type 2 1780 634 MB Type 3 2600 477 MB Type 4 3831 731 5306.2 kW [Tot per linac] to water 132.0 to air DB total power [W] MAX 874 20740 MIN 6.8 AVE 171 3546.54 408.00

Stabilisation system MBQs K. Artoos (values updated on 14.06.2010)   Number/linac Controller (W) seismometer (W) piezo (W) Total (kW) Type 1 154 12320 480.5 616.0 13.4 Type 2 634 50720 2967.1 3804.0 57.5 Type 3 477 38160 3720.6 2862.0 44.7 Type 4 731 58480 5701.8 4386.0 68.6 kW [Tot per linac] 159.68 12.9 11.7 184.2 to air

AS: EDMS# 964717 PETS: EDMS# 964715 RF system G. Riddone (values updated on 28.10.2010)   Input Total [W] AS 410.6 per 1 structure to water PETS 88 Loads 357.6 Waveguides 11.3 WFM 13 W/WFM 9639 No WFM 125.31 kW [Tot per linac] 5 W [Tot per DB sector] 58401 125.3 to air AS: EDMS# 964717 PETS: EDMS# 964715

Summary for unloaded case Water cooling 67254 kW 3203 W/m Air cooling 1609 kW 77 W/m Total per linac 68862 kW   Summary for unloaded case For C&V input was 110 W/m to WATER Totals [kW] / linac AS PETS Loads WG MB Q1 MB Q2 MB Q3 MB Q4 DB Q during operation 29319 kW 3142 kW 25535 kW 405 kW 137 kW 1129 kW 1240 kW 2800 kW 3547 kW 1396 W/m 150 W/m 1216 W/m 19 W/m 7 W/m 54 W/m 59 W/m 133 W/m 169 W/m to AIR Girder Align MB Q Align WFM Vacuum BI DB Q cables MB Q cables Stabilisation RF. Str.   123 kW 0 kW 125 kW 408 kW 228 kW 132 kW 184 kW 6 W/m 0 W/m 11 W/m 9 W/m Certainly very conservative (duty cycle 5%) Needs review to new PACMAN system New mini pumps (Nextorr) Ambient T Sum RF % to air W/m Total W/m 20 58401 kW 10% 278 355 30 3% 83 160 40 -4% -111 -34

Klystron machine Water cooling 60160 kW 2865 W/m Air cooling 990 kW Total per linac 61150 kW   to WATER Totals [kW] / linac AS PETS Loads Klystrons&WG MB Q1 MB Q2 MB Q3 MB Q4 DB Q during operation 29319 kW 0 kW 25535 kW 137 kW 1129 kW 1240 kW 2800 kW 1396 W/m 0 W/m 1216 W/m 7 W/m 54 W/m 59 W/m 133 W/m to AIR Girder Align MB Q Align WFM Vacuum BI DB Q cables MB Q cables Stabilisation RF. Str.   60 kW 125 kW 408 kW 80 kW 132 kW 184 kW 3 W/m 6 W/m 19 W/m 4 W/m 9 W/m Ambient T Sum RF % to air W/m Total W/m 20 54854 kW 10% 261 338 30 3% 78 155 40 -4% -104 -27

Conclusion Power to air dissipation is clearly dominated by RF components Ambient temperature plays major role For new module design two extreme options: 1. Make a T-resilient design potentially involving expensive material C&V much easier 2. Make a cheap design C&V much more expensive In reality a compromise have to be found

Extra slides

Cabling considerations

Long transfer lines MB DB distance between FODO magnets: 219m BI: BPMs, Beam-loss monitors, etc DB distance between FODO magnets: 55m

MBQ stabilization extra slide