Date of download: 11/1/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 5/28/2016 Copyright © ASME. All rights reserved. From: Enhanced Individual Trabecular Repair and Its Mechanical Implications in Parathyroid.
Advertisements

Date of download: 5/31/2016 Copyright © ASME. All rights reserved. From: Aerodynamic Performance of a Small Horizontal Axis Wind Turbine J. Sol. Energy.
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Study of the Velocity and Strain Fields in the Flow Through Prosthetic Heart Valves.
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: The Importance of Intrinsic Damage Properties to Bone Fragility: A Finite Element.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Lumped Parameter Model for Computing the Minimum Pressure During Mechanical Heart.
Date of download: 6/26/2016 Copyright © ASME. All rights reserved. From: Mechanics of Curved Plasma Membrane Vesicles: Resting Shapes, Membrane Curvature,
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Comparative Study in Predicting the Global Solar Radiation for Darwin, Australia.
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: Patterns of Femoral Cartilage Thickness are Different in Asymptomatic and Osteoarthritic.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: The Effect of Size and Location of Tears in the Supraspinatus Tendon on Potential.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Comparison of Strain Rosettes and Digital Image Correlation for Measuring Vertebral.
Date of download: 7/10/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Modeling of Supine Human and Transport System Under Whole-Body.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Oscillating Heat Transfer Correlations for Spiral-Coil Thermoacoustic Heat Exchangers.
Date of download: 9/20/2016 Copyright © ASME. All rights reserved.
Date of download: 10/4/2017 Copyright © ASME. All rights reserved.
Date of download: 10/5/2017 Copyright © ASME. All rights reserved.
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/15/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/30/2017 Copyright © ASME. All rights reserved.
From: Hemodynamics of the Mouse Abdominal Aortic Aneurysm
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
From: Experimental Results From an Offshore Wave Energy Converter
From: Design for Control of Wheeled Inverted Pendulum Platforms
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/12/2017 Copyright © ASME. All rights reserved.
Date of download: 11/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/5/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/28/2017 Copyright © ASME. All rights reserved.
Date of download: 12/28/2017 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Date of download: 1/6/2018 Copyright © ASME. All rights reserved.
Date of download: 11/27/2018 Copyright © ASME. All rights reserved.
Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal  B.A. Lakin, D.J. Ellis, J.S.
Presentation transcript:

Date of download: 11/1/2017 Copyright © ASME. All rights reserved. From: Changes of Elastic Constants and Anisotropy Patterns in Trabecular Bone During Disuse-Induced Bone Loss Assessed by Poroelastic Ultrasound J Biomech Eng. 2015;137(1):011008-011008-9. doi:10.1115/1.4029179 Figure Legend: Fabric anisotropy in all three anatomical planes are shown as ellipsoidal plots for the CN + VEH, IM + VEH, CN + RIS, and IM + RIS groups. Each group shows mean-SD values (red solid inner ellipsoids), the intermediate ellipsoids (blue) represent the mean values and the open mesh ellipsoids show mean + SD. There is a clear fabric anisotropy (p < 0.05) given by directional dependent microarchitecture within each group. Such DA was found similar in all groups (p > 0.05), indicating that immobilization and risedronate treatment had no significant effect on anisotropy of microarchitecture.

Date of download: 11/1/2017 Copyright © ASME. All rights reserved. From: Changes of Elastic Constants and Anisotropy Patterns in Trabecular Bone During Disuse-Induced Bone Loss Assessed by Poroelastic Ultrasound J Biomech Eng. 2015;137(1):011008-011008-9. doi:10.1115/1.4029179 Figure Legend: Magnitude of Fabric components F1, F2, and F3 (eigenvalues) from trabecular bone samples in the CN + VEH, IM + VEH, CN + RIS, and IM + RIS groups. No significant differences were observed due to immobilization or risedronate treatment; however, the comparison of F1, F2, and F3 within each treated group indicates that bone is orthotropic and remained orthotropic after immobilization and risedronate treatment.

Date of download: 11/1/2017 Copyright © ASME. All rights reserved. From: Changes of Elastic Constants and Anisotropy Patterns in Trabecular Bone During Disuse-Induced Bone Loss Assessed by Poroelastic Ultrasound J Biomech Eng. 2015;137(1):011008-011008-9. doi:10.1115/1.4029179 Figure Legend: Global changes in microarchitecture, TMD and vBMD as a consequence of immobilization and antiresorptive treatment. (a)–(c) show the Tb.Th, Tb.Sp, and Tb.N, respectively, and (d)–(f) correspond to BV/TV, TMD, and vBMD. There is a similar pattern for Tb.Th, Tb.N, BV/TV, TMD, and vBMD, and Tb.Sp exhibits the opposite trend. However, significant differences were only found in Tb.Th and BV/TV when comparing CN + VEH versus IM + VEH, indicating a significant effect of immobilization in Tb.Th and BV/TV, and when comparing CN + RIS versus IM + RIS, indicating that immobilization has an effect in Tb.Th and BV/TV, but not in Tb.N, Tb. Sp, TMD, or BMD. It was also found a difference in Tb.Th between IM + VEH and IM + RIS groups, but there is not a difference in Tb.Th or BV/TV when comparing CN + VEH versus IM + RIS, indicating that RIS treatment was effective in slowing the bone loss produced by immobilization.

Date of download: 11/1/2017 Copyright © ASME. All rights reserved. From: Changes of Elastic Constants and Anisotropy Patterns in Trabecular Bone During Disuse-Induced Bone Loss Assessed by Poroelastic Ultrasound J Biomech Eng. 2015;137(1):011008-011008-9. doi:10.1115/1.4029179 Figure Legend: 3D images from μCT scanning. (a) shows the CN + VEH; (b) displays IM + VEH, in (c) an example from the CN + RIS group and a sample form IM + RIS is shown in (d). The different thickness in trabeculae can be observed in each group.

Date of download: 11/1/2017 Copyright © ASME. All rights reserved. From: Changes of Elastic Constants and Anisotropy Patterns in Trabecular Bone During Disuse-Induced Bone Loss Assessed by Poroelastic Ultrasound J Biomech Eng. 2015;137(1):011008-011008-9. doi:10.1115/1.4029179 Figure Legend: Ultrasonic wave velocities and apparent EC as a function of vBMD (a), theoretical PEUS wave velocities (b), and theoretical EC (c). Coefficient of correlation between wave velocities and vBMD was R2 = 0.58. Theoretical poroelastic wave propagation theory was able to predict 81% of experimental wave velocity variability (R2 = 0.81), and the theoretical poroelastic constants were higher correlated to experimental constants (R2 = 0.91) that vBMD or wave velocity.

Date of download: 11/1/2017 Copyright © ASME. All rights reserved. From: Changes of Elastic Constants and Anisotropy Patterns in Trabecular Bone During Disuse-Induced Bone Loss Assessed by Poroelastic Ultrasound J Biomech Eng. 2015;137(1):011008-011008-9. doi:10.1115/1.4029179 Figure Legend: The shift from an ellipsoid (CN + VEH) to a more spherical shape (IM + VEH) shows that bone loss is not uniform in all directions. The antiresorptive therapy during immobilization (IM + RIS) exhibit an ellipsoid smaller than CN + RIS, consistent with bone loss, but it maintains the same anisotropy ratio as the control group, indicating a conservation of mechanical function.