Fig. 9-1.

Slides:



Advertisements
Similar presentations
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Advertisements

Ch 9 Cellular Respiration Extracting usable energy from organic molecules.
Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most.
Chp 9: Cellular Respiration. Figure 9-01 LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 9 Cellular Respiration. Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic.
10/18/11 Chapter 9: Cellular Respiration. The Principle of Redox Chemical reactions that transfer electrons between reactants are called oxidation- reduction.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 9.1 Cellular respiration – Is the most prevalent and efficient catabolic.
LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP powers most.
Cellular Respiration: Harvesting Chemical Energy Chapter 9.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Slides for Biology, Seventh Edition Neil Campbell and Jane.
Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2 + H 2 O Cellular respiration in mitochondria Organic molecules + O 2 ATP powers most cellular.
© 2014 Pearson Education, Inc. Figure 7.1. © 2014 Pearson Education, Inc. Figure 7.2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO 2  H 2.
Cell Respiration-Introduction Energy needed to keep the entropy of the cell low Importance of ATP Autotrophs and heterotrophs-similarities and differences.
Fig. 9-1 Chapter 9 Cellular Respiration: Harvesting Chemical Energy.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Figure LE 9-2 ECOSYSTEM Light energy Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 CO 2 + H 2 O ATP.
Cellular Respiration.
Aerobic Cellular Respiration
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Chapter 7: Cellular Respiration pages
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Living cells require energy from outside sources
Cellular Energy Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O2 and organic molecules, which are used in cellular.
Cellular Respiration.
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration Remember: In order for cells to survive, it must have energy to do work!!! ATP is the energy that’s available to do work! How does.
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration and Fermentation
Cellular Respiration.
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration and Fermentation
Harvesting Energy from Organic Molecules
Cellular Respiration: Harvesting Chemical Energy
Glycolysis occurs in the cytoplasm and has two major phases:
Cellular Respiration and Fermentation
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration Video
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration.
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Fig. 9-1 Figure 9.1 How do these leaves power the work of life for the giant panda?
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration.
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration: Harvesting Chemical Energy
Presentation transcript:

Fig. 9-1

Organic molecules Cellular respiration in mitochondria Fig. 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts Organic molecules CO2 + H2O + O2 Cellular respiration in mitochondria ATP ATP powers most cellular work Heat energy

becomes oxidized (loses electron) becomes reduced (gains electron) Fig. 9-UN1 becomes oxidized (loses electron) becomes reduced (gains electron)

becomes oxidized becomes reduced Fig. 9-UN2 becomes oxidized becomes reduced

Methane (reducing agent) Oxygen (oxidizing agent) Fig. 9-3 Reactants Products becomes oxidized becomes reduced Methane (reducing agent) Oxygen (oxidizing agent) Carbon dioxide Water

Fig. 9-UN3 becomes oxidized becomes reduced

Fig. 9-UN4 Dehydrogenase

NADH H+ NAD+ + 2[H] + H+ 2 e– + 2 H+ 2 e– + H+ Dehydrogenase Fig. 9-4 2 e– + 2 H+ 2 e– + H+ NADH H+ Dehydrogenase Reduction of NAD+ NAD+ + 2[H] + H+ Oxidation of NADH Nicotinamide (reduced form) Nicotinamide (oxidized form)

(a) Uncontrolled reaction (b) Cellular respiration Fig. 9-5 H2 + 1/2 O2 2 H + 1/2 O2 (from food via NADH) Controlled release of energy for synthesis of ATP 2 H+ + 2 e– ATP Explosive release of heat and light energy ATP Electron transport chain Free energy, G Free energy, G ATP 2 e– 1/2 O2 2 H+ H2O H2O (a) Uncontrolled reaction (b) Cellular respiration

Electrons carried via NADH ATP Substrate-level phosphorylation Fig. 9-6-1 Electrons carried via NADH Glycolysis Glucose Pyruvate Cytosol ATP Substrate-level phosphorylation

Electrons carried via NADH Electrons carried via NADH and FADH2 Fig. 9-6-2 Electrons carried via NADH Electrons carried via NADH and FADH2 Glycolysis Citric acid cycle Glucose Pyruvate Mitochondrion Cytosol ATP ATP Substrate-level phosphorylation Substrate-level phosphorylation

Electrons carried via NADH Electrons carried via NADH and FADH2 Fig. 9-6-3 Electrons carried via NADH Electrons carried via NADH and FADH2 Oxidative phosphorylation: electron transport and chemiosmosis Glycolysis Citric acid cycle Glucose Pyruvate Mitochondrion Cytosol ATP ATP ATP Substrate-level phosphorylation Substrate-level phosphorylation Oxidative phosphorylation

Fig. 9-7 Enzyme Enzyme ADP P Substrate + ATP Product

Energy investment phase Fig. 9-8 Energy investment phase Glucose 2 ADP + 2 P 2 ATP used Energy payoff phase 4 ADP + 4 P 4 ATP formed 2 NAD+ + 4 e– + 4 H+ 2 NADH + 2 H+ 2 Pyruvate + 2 H2O Net Glucose 2 Pyruvate + 2 H2O 4 ATP formed – 2 ATP used 2 ATP 2 NAD+ + 4 e– + 4 H+ 2 NADH + 2 H+

Glucose ATP 1 Hexokinase ADP Glucose-6-phosphate Fig. 9-9-1 ATP 1 ADP

Glucose-6-phosphate 2 Phosphogluco- isomerase Fructose-6-phosphate Fig. 9-9-2 Glucose ATP 1 Hexokinase ADP Glucose-6-phosphate Glucose-6-phosphate 2 Phosphoglucoisomerase 2 Phosphogluco- isomerase Fructose-6-phosphate Fructose-6-phosphate

Fructose- 1, 6-bisphosphate Fig. 9-9-3 Glucose ATP 1 1 Hexokinase ADP Fructose-6-phosphate Glucose-6-phosphate 2 2 Phosphoglucoisomerase ATP 3 Phosphofructo- kinase Fructose-6-phosphate ATP 3 3 ADP Phosphofructokinase ADP Fructose- 1, 6-bisphosphate Fructose- 1, 6-bisphosphate

Aldolase Isomerase Fructose- 1, 6-bisphosphate 4 5 Dihydroxyacetone Fig. 9-9-4 Glucose ATP 1 Hexokinase ADP Glucose-6-phosphate 2 Phosphoglucoisomerase Fructose- 1, 6-bisphosphate 4 Fructose-6-phosphate Aldolase ATP 3 Phosphofructokinase ADP 5 Isomerase Fructose- 1, 6-bisphosphate 4 Aldolase 5 Isomerase Dihydroxyacetone phosphate Glyceraldehyde- 3-phosphate Dihydroxyacetone phosphate Glyceraldehyde- 3-phosphate

Glyceraldehyde- 3-phosphate Fig. 9-9-5 2 NAD+ 6 Triose phosphate dehydrogenase 2 NADH 2 P i + 2 H+ 2 2 1, 3-Bisphosphoglycerate Glyceraldehyde- 3-phosphate 2 NAD+ 6 Triose phosphate dehydrogenase 2 P 2 NADH i + 2 H+ 2 1, 3-Bisphosphoglycerate

2 2 ADP 2 ATP 2 3-Phosphoglycerate 1, 3-Bisphosphoglycerate 7 Fig. 9-9-6 2 NAD+ 6 Triose phosphate dehydrogenase 2 NADH 2 P i + 2 H+ 2 1, 3-Bisphosphoglycerate 2 ADP 7 Phosphoglycerokinase 2 ATP 2 1, 3-Bisphosphoglycerate 2 ADP 2 3-Phosphoglycerate 7 Phosphoglycero- kinase 2 ATP 2 3-Phosphoglycerate

2 3-Phosphoglycerate 8 Phosphoglycero- mutase 2 2-Phosphoglycerate Fig. 9-9-7 2 NAD+ 6 Triose phosphate dehydrogenase 2 NADH 2 P i + 2 H+ 2 1, 3-Bisphosphoglycerate 2 ADP 7 Phosphoglycerokinase 2 ATP 2 3-Phosphoglycerate 2 3-Phosphoglycerate 8 Phosphoglyceromutase 8 Phosphoglycero- mutase 2 2-Phosphoglycerate 2 2-Phosphoglycerate

2 2-Phosphoglycerate Enolase 2 H2O 2 Phosphoenolpyruvate 9 Fig. 9-9-8 2 NAD+ 6 Triose phosphate dehydrogenase 2 NADH 2 P i + 2 H+ 2 1, 3-Bisphosphoglycerate 2 ADP 7 Phosphoglycerokinase 2 ATP 2 2-Phosphoglycerate 2 3-Phosphoglycerate 8 Phosphoglyceromutase 9 Enolase 2 H2O 2 2-Phosphoglycerate 9 Enolase 2 H2O 2 Phosphoenolpyruvate 2 Phosphoenolpyruvate

2 Phosphoenolpyruvate 2 ADP 10 Pyruvate kinase 2 ATP 2 Pyruvate Fig. 9-9-9 2 NAD+ 6 Triose phosphate dehydrogenase 2 NADH 2 P i + 2 H+ 2 1, 3-Bisphosphoglycerate 2 ADP 7 Phosphoglycerokinase 2 ATP 2 Phosphoenolpyruvate 2 ADP 2 3-Phosphoglycerate 8 10 Phosphoglyceromutase Pyruvate kinase 2 ATP 2 2-Phosphoglycerate 9 Enolase 2 H2O 2 Phosphoenolpyruvate 2 ADP 10 Pyruvate kinase 2 ATP 2 Pyruvate 2 Pyruvate

CYTOSOL MITOCHONDRION NAD+ NADH + H+ 2 1 3 Acetyl CoA Pyruvate Fig. 9-10 CYTOSOL MITOCHONDRION NAD+ NADH + H+ 2 1 3 Acetyl CoA Pyruvate Coenzyme A CO2 Transport protein

Pyruvate CO2 NAD+ CoA NADH + H+ Acetyl CoA CoA CoA Citric acid cycle 2 Fig. 9-11 Pyruvate CO2 NAD+ CoA NADH + H+ Acetyl CoA CoA CoA Citric acid cycle 2 CO2 FADH2 3 NAD+ FAD 3 NADH + 3 H+ ADP + P i ATP

Fig. 9-12-1 Acetyl CoA CoA—SH 1 Oxaloacetate Citrate Citric acid cycle

Fig. 9-12-2 Acetyl CoA Oxaloacetate Citrate Isocitrate Citric acid CoA—SH 1 H2O Oxaloacetate 2 Citrate Isocitrate Citric acid cycle

Fig. 9-12-3 Acetyl CoA Oxaloacetate Citrate Isocitrate Citric acid CoA—SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD+ Citric acid cycle NADH 3 + H+ CO2 -Keto- glutarate

Citric acid cycle Succinyl CoA Fig. 9-12-4 Acetyl CoA CoA—SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD+ Citric acid cycle NADH 3 + H+ CO2 CoA—SH -Keto- glutarate 4 CO2 NAD+ NADH Succinyl CoA + H+

Citric acid cycle Succinyl CoA Fig. 9-12-5 Acetyl CoA CoA—SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD+ Citric acid cycle NADH 3 + H+ CO2 CoA—SH -Keto- glutarate 4 CoA—SH 5 CO2 NAD+ Succinate P NADH i GTP GDP Succinyl CoA + H+ ADP ATP

Citric acid cycle Succinyl CoA Fig. 9-12-6 Acetyl CoA CoA—SH 1 H2O Oxaloacetate 2 Citrate Isocitrate NAD+ Citric acid cycle NADH 3 + H+ CO2 Fumarate CoA—SH -Keto- glutarate 6 4 CoA—SH FADH2 5 CO2 NAD+ FAD Succinate P NADH i GTP GDP Succinyl CoA + H+ ADP ATP

Citric acid cycle Succinyl CoA Fig. 9-12-7 Acetyl CoA CoA—SH 1 H2O Oxaloacetate 2 Malate Citrate Isocitrate NAD+ Citric acid cycle NADH 3 7 + H+ H2O CO2 Fumarate CoA—SH -Keto- glutarate 6 4 CoA—SH FADH2 5 CO2 NAD+ FAD Succinate P P NADH i GTP GDP Succinyl CoA + H+ ADP ATP

Citric acid cycle Succinyl CoA Fig. 9-12-8 Acetyl CoA CoA—SH NADH +H+ 1 H2O NAD+ 8 Oxaloacetate 2 Malate Citrate Isocitrate NAD+ Citric acid cycle NADH 3 7 + H+ H2O CO2 Fumarate CoA—SH -Keto- glutarate 4 6 CoA—SH FADH2 5 CO2 NAD+ FAD Succinate P NADH i GTP GDP Succinyl CoA + H+ ADP ATP

Fig. 9-13 NADH 50 2 e– NAD+ FADH2 2 e– FAD Multiprotein complexes  40 FMN FAD  Fe•S Fe•S Q  Cyt b Fe•S 30 Cyt c1 IV Free energy (G) relative to O2 (kcal/mol) Cyt c Cyt a Cyt a3 20 e– 10 2 (from NADH or FADH2) 2 H+ + 1/2 O2 H2O

INTERMEMBRANE SPACE H+ Stator Rotor Internal rod Cata- lytic knob ADP Fig. 9-14 INTERMEMBRANE SPACE H+ Stator Rotor Internal rod Cata- lytic knob ADP + P ATP i MITOCHONDRIAL MATRIX

Number of photons detected (103) Fig. 9-15 EXPERIMENT Magnetic bead Electromagnet Internal rod Sample Catalytic knob Nickel plate RESULTS Rotation in one direction Rotation in opposite direction No rotation 30 Number of photons detected (103) 25 20 Sequential trials

EXPERIMENT Magnetic bead Electromagnet Internal rod Sample Catalytic Fig. 9-15a EXPERIMENT Magnetic bead Electromagnet Internal rod Sample Catalytic knob Nickel plate

RESULTS Rotation in one direction Rotation in opposite direction Fig. 9-15b RESULTS Rotation in one direction Rotation in opposite direction No rotation 30 Number of photons detected (x 103) 25 20 Sequential trials

Electron transport chain 2 Chemiosmosis Fig. 9-16 H+ H+ H+ H+ Protein complex of electron carriers Cyt c V Q   ATP synthase  2 H+ + 1/2O2 H2O FADH2 FAD NADH NAD+ ADP + P ATP i (carrying electrons from food) H+ 1 Electron transport chain 2 Chemiosmosis Oxidative phosphorylation

Fig. 9-17 Citric acid cycle CYTOSOL Electron shuttles span membrane MITOCHONDRION 2 NADH or 2 FADH2 2 NADH 2 NADH 6 NADH 2 FADH2 Glycolysis Oxidative phosphorylation: electron transport and chemiosmosis 2 Pyruvate 2 Acetyl CoA Citric acid cycle Glucose + 2 ATP + 2 ATP + about 32 or 34 ATP About 36 or 38 ATP Maximum per glucose:

Fig. 9-18 2 ADP + 2 Pi 2 ATP Glucose Glycolysis 2 Pyruvate 2 NAD+ 2 NADH 2 CO2 + 2 H+ 2 Ethanol 2 Acetaldehyde (a) Alcohol fermentation 2 ADP + 2 Pi 2 ATP Glucose Glycolysis 2 NAD+ 2 NADH + 2 H+ 2 Pyruvate 2 Lactate (b) Lactic acid fermentation

(a) Alcohol fermentation Fig. 9-18a 2 ADP + 2 P 2 ATP i Glucose Glycolysis 2 Pyruvate 2 NAD+ 2 NADH 2 CO2 + 2 H+ 2 Acetaldehyde 2 Ethanol (a) Alcohol fermentation

(b) Lactic acid fermentation Fig. 9-18b 2 ADP + 2 P 2 ATP i Glucose Glycolysis 2 NAD+ 2 NADH + 2 H+ 2 Pyruvate 2 Lactate (b) Lactic acid fermentation

Ethanol or lactate Citric acid cycle Fig. 9-19 Glucose Glycolysis CYTOSOL Pyruvate O2 present: Aerobic cellular respiration No O2 present: Fermentation MITOCHONDRION Ethanol or lactate Acetyl CoA Citric acid cycle

Citric acid cycle Oxidative phosphorylation Fig. 9-20 Proteins Carbohydrates Fats Amino acids Sugars Glycerol Fatty acids Glycolysis Glucose Glyceraldehyde-3- P NH3 Pyruvate Acetyl CoA Citric acid cycle Oxidative phosphorylation

Fig. 9-21 Glucose AMP Glycolysis Fructose-6-phosphate Stimulates + Phosphofructokinase – – Fructose-1,6-bisphosphate Inhibits Inhibits Pyruvate ATP Citrate Acetyl CoA Citric acid cycle Oxidative phosphorylation

Fig. 9-UN5 Inputs Outputs 2 ATP Glycolysis + 2 NADH Glucose 2 Pyruvate

Inputs Outputs S—CoA 2 ATP C O CH3 2 Acetyl CoA 6 NADH O C COO Fig. 9-UN6 Inputs Outputs S—CoA 2 ATP C O CH3 2 Acetyl CoA 6 NADH O C COO Citric acid cycle CH2 2 FADH2 COO 2 Oxaloacetate

INTER- MEMBRANE SPACE H+ ATP synthase ADP + P ATP MITO- CHONDRIAL Fig. 9-UN7 INTER- MEMBRANE SPACE H+ ATP synthase ADP + P ATP i MITO- CHONDRIAL MATRIX H+

Fig. 9-UN8 across membrane pH difference Time

Fig. 9-UN9