Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and

Slides:



Advertisements
Similar presentations
Martin G. Schultz, MPI Meteorology, Hamburg GEMS proposal preparation meeting, Reading, Dec 2003 GEMS RG Global reactive gases monitoring and forecast.
Advertisements

SSAG Data and Algorithm Subgroup, February 2004, Brussels Summary of data product and algorithm development at KNMI Ronald van der A, Juan Acarreta,
Page 1 Tropospheric NO 2 workshop, KNMI, De Bilt NL, Sept 2007M. Van Roozendael Tropospheric NO 2 from space: retrieval issues and perspectives for.
Henk Eskes, NO2 workshop KNMI, 10 Sep 2007 A combined retrieval, modelling and assimilation approach to estimate tropospheric NO2 from OMI measurements.
Henk Eskes, William Lahoz, ESTEC, 20 Jan 2004 The role of data assimilation in atmospheric composition monitoring and forecasting Henk Eskes, William Lahoz.
Algorithm improvements for Dutch OMI NO2 retrievals (towards v3.0)
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
Harmonisation of stratospheric NO 2 /O 3 column data products NORS/NDACC UV-VIS meeting, Brussels, 3-4 July F. Hendrick and M. Van Roozendael Belgian.
Indicators for policy support of atmosphere related environmental problems Robert Koelemeijer National Institute for Public Health and the Environment.
Data assimilation of trace gases in a regional chemical transport model: the impact on model forecasts E. Emili 1, O. Pannekoucke 1,2, E. Jaumouillé 2,
1 Operational O3M-SAF trace-gas column products: GOME-2 tropospheric NO 2, Ozone, and total SO 2 AT2 Seventh Workshop Helsinki, Sep Oct. 1, 2008.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Xiong Liu Harvard-Smithsonian Center for Astrophysics December 20, 2004 Direct Tropospheric Ozone Retrieval from GOME.
Methane inversion from satellite, TRANSCOM workshop, Jena, May 2003 Inverse modelling of methane sources and sinks using satellite observations Jan.
Assimilation of Aerosol Optical Depth Gé Verver 1, Bas Henzing 1, Peter van Velthoven 1 Cristina Robles-Gonzalez 2, Gerrit de Leeuw 2 1 KNMI, De Bilt,
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
Bas Mijling Ronald van der A AMFIC Final Meeting ● Beijing ● 23 October 2009 Results of WP 5 : Air Quality Forecasting.
Elena Spinei and George Mount Washington State University 1 CINDI workshop March 2010.
TEMIS user workshop, Frascati, 8-9 October 2007 Tropospheric Formaldehyde (CH 2 O) from Satellite Observations. Isabelle De Smedt 1, M. Van Roozendael.
A comparison of air quality simulated by LOTO-EUROS driven by Harmonie and ECMWF using observations from Cabauw Jieying Ding, Ujjwal Kumar, Henk Eskes,
Air Quality Forecasting Bas Mijling Ronald van der A AMFIC Annual Meeting ● Beijing ● October 2008.
Tropospheric NO2 and ozone Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Jos de Laat, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Thessaloniki,
Ankie Piters Royal Netherlands Meteorological Institute Ministry of Infrastructure and Environment Measuring vertical profiles and tropospheric columns.
Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008.
SO2 and HCHO data from satellite & MAXDOAS instrument in Beijing Jos van Geffen Michel Van Roozendael, Isabelle De Smedt BIRA-IASB 1st AMFIC progress meeting.
SAO OMI formaldehyde, water vapor and glyoxal retrievals Gonzalo Gonzalez Abad Helen Wang Christopher Miller Kelly Chance Xiong Liu Thomas Kurosu OMI Science.
WP 3 Satellite observations. SCIAMACHY retrieval Month 15: Initial error report Month 18: First dataset for CH4 and CO Incorporation of ECMWF p/T profiles.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
Air Quality Forecasting in China using a regional model Bas Mijling Ronald van der A Henk Eskes Hennie Kelder.
Folkert Boersma Reducing errors in using tropospheric NO 2 columns observed from space.
Satellite group MPI Mainz Investigating Global Long-term Data Sets of the Atmospheric H 2 O VCD and of Cloud Properties.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
Air Pollution/Environmental Technology laboratory Initial results on OMI NO 2 Validation during CINDI A contribution to the BIRA Cindi Workshop Yipin Zhou,
Validation of OMI NO 2 data using ground-based spectrometric NO 2 measurements at Zvenigorod, Russia A.N. Gruzdev and A.S. Elokhov A.M. Obukhov Institute.
10-11 October 2006HYMN kick-off TM3/4/5 Modeling at KNMI HYMN Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the.
Trace gas algorithms for TEMPO G. Gonzalez Abad 1, X. Liu 1, C. Miller 1, H. Wang 1, C. Nowlan 2 and K. Chance 1 1 Harvard-Smithsonian Center for Astrophysics.
WP 5 : Air Quality Forecasting Bas Mijling Ronald van der A Arjan Lampe AMFIC Progress Meeting ● Barcelona ● 24 June 2009.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
ICDC7, Boulder September 2005 Estimation of atmospheric CO 2 from AIRS infrared satellite radiances in the ECMWF data assimilation system Richard.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, 23 October 2009.
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
Henk Eskes, ERS-ENVISAT symposium 2004 Retrieval, validation and assimilation of SCIAMACHY ozone columns Henk Eskes, Ronald van der A, Ellen Brinksma,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
MAXDOAS observations in Beijing G. Pinardi, K. Clémer, C. Hermans, C. Fayt, M. Van Roozendael BIRA-IASB Pucai Wang & Jianhui Bai IAP/CAS 24 June 2009,
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Barcelona, June 2009.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
ESA :DRAGON/ EU :AMFIC Air quality Monitoring and Forecasting In China Ronald van der A, KNMI Bas Mijling, KNMI Hennie Kelder KNMI, TUE DRAGON /AMFIC project.
Page 1 OMI ST Meeting #11, KNMI, De Bilt, The Netherlands, June 2006 Validation of OMI trace gas products Main contributors (this work): Michel Van.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
MAX-DOAS observations of tropospheric aerosols and formaldehyde above China Tim Vlemmix Francois Hendrick Michel Van Roozendael Isabelle De Smedt Katrijn.
1 SO 2 Air Mass Factors for pollution and volcanic emissions OMI Science Team Meeting De Bilt, June 2006 Pieter Valks, Werner Thomas, Thilo Ebertseder,
DOAS workshop 2015, Brussels, July 2015
Michel Van Roozendael BIRA-IASB, Brussels, Belgium
Concurrent measurements of tropospheric NO2 from OMI and SCIAMACHY
Henk Eskes, Jan Fokke Meirink, Ankie Piters
Randall Martin, Dalhousie and Harvard-Smithsonian
Randall Martin, Daniel Jacob, Jennifer Logan, Paul Palmer
An Improved Retrieval of Tropospheric Nitrogen Dioxide from GOME
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
SATELLITE OBSERVATIONS OF OZONE PRECURSORS FROM GOME
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Constraining the magnitude and diurnal variation of NOx sources from space Folkert Boersma.
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and surface observations Nadège Blond, LISA, Paris, France Henk Eskes, Folkert Boersma, Ronald van der A KNMI, Netherlands Michel van Roozendael, Isabelle De Smedt BIRA-IASB, Belgium

Slant column retrieval approach (BIRA-IASB) DOAS slant column: • "raw" L1, v 4.02 L1, v 5.01 L1 • Non-linear least-squares inversion (Marquardt-Levenberg) • Wavelength window 426.3 - 451.3 • NO2 243K (Bogumil), O3 (Bogumil), O2-O2, H2O • 2nd order polynomial • Undersampling cross section • Ring (Vountas) • Offset correction based on measurement over Indian Ocean

Combined retrieval - modelling - assimilation approach to SCIA NO2 Careful treatment needed for: • Clouds • Surface albedo • Profile shape • Aerosol

Slant to vertical column retrieval approach (KNMI) Air-mass factor calculation: • Temperature correction (NO2 cross section) • TM3 / TM4 (tropospheric) CTM • Assimilation of slant columns -> stratospheric "background" • Fresco cloud fraction and cloud top pressure • TOMS / GOME combined albedo map (Herman, Koelemeijer) • DAK RTM height-dependent AMF lookup table • Tropospheric AMF based on TM profile shape, clouds Product: • Detailed error estimates • Averaging kernels

Validation results (ACVE-2), stratosphere J. C. Lambert NO2 products: • SCIA processor • IUP • SAO • BIRA-IASB • Heidelberg

Combined retrieval - modelling - assimilation approach to GOME NO2

Chimère model Developed in France R. Vautard, H. Schmidt, L. Menut, M. Beekman, N. Blond, ... ) Operational air-quality forecasts: http://www.prevair.org/ Model ingredients: • MELCHIOR chemistry (82 species, 333 reactions) • EMEP emissions • ECMWF meteorological analyses • 15 vertical layers, surface - 200 hPa • Boundary conditions from MOZART monthly-mean climatology

Emissions

Intercomparisons Chimère, SCIA and surface observations Motivation: • Lack of profile observations of NO2 for validation purposes: use model as intermediate for indirect validation study Approach: • Space-time collocation of Chimère fields to individual SCIA pixels • Application of averaging kernels: Simulated SCIA-equiv column = kernel vector • model NO2 profile • One year of SCIA data, 2003; Cloud free (cloud radiance < 50%) Advantages: • Compare model-SCIA under exactly same conditions (e.g. cloud free) • Comparison independent of profile shape assumptions in the retrieval

Chimère and surface observations (RIVM, NL) Netherlands: (rural stations) Bias 0.1 ppb RMS 7.2 ppb Correl. 0.66

SCIAMACHY vs. Chimère: yearly mean Yearly-mean bias = 0.2 1015 molec cm-2, RMS 2.9, correl.coeff. 0.73 Cloud-free pixels

SCIAMACHY vs. Chimère: 27 Feb 2004

SCIAMACHY vs. Chimère: 28 Mar 2004

SCIAMACHY vs. Chimère: 16 April 2004

SCIAMACHY vs. Chimère: 16 Sep 2004

Synergy: Surface - Chimère - SCIAMACHY

Conclusions NO2 comparisons SCIAMACHY - Chimère - surface • Yearly mean: - very small bias SCIA - Chimère and Chimère - surface - Correlation coefficients 0.7 typically • SCIA and Chimère resolution comparable • Extended NO2 plumes compare well • Details show differences: - Seasonality (winter Chimère higher) - Individual days - Distribution - Amount of detail