Complex Eigenvalues kshum ENGG2420B
Steps in calculating eigenvalues and eigenvectors Given a matrix M. Find the characteristic polynomial. Find the roots of the characteristic polynomial. For each eigenvalue of M, find the non-zero vectors v such that M v = v. kshum ENGG2420B
Example: flip A linear transformation L(x,y) given by: L(x,y) = (x, -y) x x y – y kshum ENGG2420B
Example: shear action A linear transformation given by L(x,y) = (x+0.25y, y) x x+ 0.25 y y y kshum ENGG2420B
Repeated eigenvalues, one linearly independent eigenvector What are the eigenvalues of ? Eigenvectors ? Solve \det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 ( k nonzero ) kshum ENGG2420B
Example: Expansion L(x,y) = (ax, ay), for some constant a. x ax y ay kshum ENGG2420B
Repeated eigenvalues, two linearly independent eigenvectors What are the eigenvalues of ? Eigenvectors ? Solve \det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 All non-zero vectors are eigenvector. kshum ENGG2420B
Example: Rotation Rotation by 90 degrees counter-clockwise: L(x,y) = (– y , x). x – y y x kshum ENGG2420B
Eigenvalues = ? No real root \det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 kshum ENGG2420B
Extension to complex vectors and matrix Given a square matrix A, a non-zero vector v is called an eigenvector of A, if we an find a number , which may be complex, such that This number is the eigenvalue of A corresponding to the eigenvector v. kshum ENGG2420B
Complex Eigenvalues \det \begin{bmatrix}1-\lambda& c\\0 & 1-\lambda \end{bmatrix} = 0 kshum ENGG2420B