The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.

Slides:



Advertisements
Similar presentations
EXAMPLE 4 Prove the Converse of the Hinge Theorem
Advertisements

Inequalities in Two Triangles
Section 5-5 Inequalities for One Triangle
The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.
5-5 Indirect Proof and Inequalities in One Triangle Warm Up
Apply inequalities in one triangle. Objectives. Triangle inequality theorem Vocabulary.
GEOMETRY 4-6 Triangle Inequalities Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Objectives Apply inequalities in one triangle..
The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.
Geometry 5-5 Inequalities in Triangles Within a triangle: – the biggest side is opposite the biggest angle. – the smallest side is opposite the smallest.
Warm-up: Find the missing side lengths and angle measures This triangle is an equilateral triangle 10 feet 25 feet This triangle is an isosceles triangle.
Anna Chang T2. Angle-Side Relationships in Triangles The side that is opposite to the smallest angle will be always the shortest side and the side that.
5.6 Indirect Proof & Inequalities in Two Triangles Geometry Mrs. Spitz Fall 2004.
Inequalities in Two Triangles
5-5 Indirect Proof and Inequalities in One Triangle Warm Up
By: Sean Bonner and Tyler Martin.  Properties of Inequality  If a > b and c ≥ d, then a + c > b + d  If a > b and c > c then ac > bc and a/c > b/c.
Objectives Write indirect proofs. Apply inequalities in one triangle.
5.5 Inequalities in One Triangle. Objectives: Students will analyze triangle measurements to decide which side is longest & which angle is largest; students.
5-Minute check……..APK Cond = H-C, Conv= C-H, Inverse = Not H – Not C, Contra = Not C – Not H.
Comparing Measures of a Triangle There is a relationship between the positions of the longest and shortest sides of a triangle and the positions of its.
Warm Up Lesson Presentation Lesson Quiz
Holt Geometry 5-5 Indirect Proof and Inequalities in One Triangle 5-5 Indirect Proof and Inequalities in One Triangle Holt Geometry Warm Up Warm Up Lesson.
Chapter 6 Review. + DEFINITION OF INEQUALITY Difference in size, degree or congruence A B
Holt Geometry 5-5 Inequalities in One Triangle 5-5 Inequalities in One Triangle Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
5.6 Inequalities in 2 Triangles
4.7 Triangle Inequalities. Theorem 4.10 If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than.
5-5 Indirect Proof. Indirect Reasoning In indirect reasoning, all possibilities are considered and then all but one are proved false. – The remaining.
Geometry Mini Quiz 12/10/15 1) 3) Fill in the chart. Write the name of the point of concurrency (where they meet). 2) AltitudesAngle Bisector MediansPerpendicular.
Chapter 7 Geometric Inequalities Chin-Sung Lin. Inequality Postulates Mr. Chin-Sung Lin.
Inequalities and Triangles
Holt McDougal Geometry 5-4 The Triangle Midsegment Theorem Warm Up Use the points A(2, 2), B(12, 2) and C(4, 8) for Exercises 1–5. 1. Find X and Y, the.
4.7 Triangle Inequalities
Friday, November 9, 2012 Agenda: TISK; No MM. Lesson 5-6: Compare side lengths and measures using the Hinge Theorem. Homework: 5-6 Worksheet.
5-5 Inequalities in One Triangle Warm Up Lesson Presentation
EXAMPLE 3 Write an indirect proof Write an indirect proof that an odd number is not divisible by 4. GIVEN : x is an odd number. PROVE : x is not divisible.
Holt Geometry 5-5 Indirect Proof and Inequalities in One Triangle 5-5 Indirect Proof and Inequalities in One Triangle Holt Geometry.
5.5 Triangle Inequality. Objectives: Use the Triangle Inequality.
5-5 Indirect Proof and Inequalities in One Triangle Warm Up
Inequalities in Two Triangles
Write the if-then form, converse, inverse, and contrapositive of the given statement. 3x – 8 = 22 because x = 10. ANSWER Conditional: If x =
5.6 Comparing Measures of a Triangle
5-5 Inequalities in Triangles
6.5 Inequalities in Triangles and Indirect Proofs
Objectives Apply inequalities in one triangle..
5.6 Indirect Proof & Inequalities in Two Triangles
5-5 Indirect Proof and Inequalities in One Triangle Warm Up
Objectives Write indirect proofs. Apply inequalities in one triangle.
Triangle Inequalities
Check It Out! Example 1 Write an indirect proof that a triangle cannot have two right angles. Step 1 Identify the conjecture to be proven. Given: A triangle’s.
6.5 Indirect proof inequalities in one triangle
5.6 Indirect Proof & Inequalities in Two Triangles
Warm Up What’s Wrong With Each Picture? 38° 65° 75°
Triangle Inequalities
EXAMPLE 1 Relate side length and angle measure
Pearson Unit 1 Topic 5: Relationships Within Triangles 5-7: Inequalities in One Triangle Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Inequalities in Two Triangles
BASIC GEOMETRY Section 5: Inequalities in one Triangle
Honors Geometry.
Triangle Inequalities
The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.
Objectives Apply inequalities in one triangle..
Class Greeting.
EXAMPLE 1 Relate side length and angle measure
Vocabulary Indirect Proof
Properties of Triangles
Learning Targets I will identify the first step in an indirect proof.
Inequalities in Two Triangles
5.6 Inequalities in Two Triangles and Indirect Proof
1. Solve 3x + 8 < 29. ANSWER x < 7 2. Solve 15 > –2x – 9.
Triangle Inequalities
Presentation transcript:

The positions of the longest and shortest sides of a triangle are related to the positions of the largest and smallest angles.

Example 2A: Ordering Triangle Side Lengths and Angle Measures Write the angles in order from smallest to largest. The shortest side is , so the smallest angle is F. The longest side is , so the largest angle is G. The angles from smallest to largest are F, H and G.

Example 2B: Ordering Triangle Side Lengths and Angle Measures Write the sides in order from shortest to longest. mR = 180° – (60° + 72°) = 48° The smallest angle is R, so the shortest side is . The largest angle is Q, so the longest side is . The sides from shortest to longest are

Check It Out! Example 2a Write the angles in order from smallest to largest. The shortest side is , so the smallest angle is B. The longest side is , so the largest angle is C. The angles from smallest to largest are B, A, and C.

Check It Out! Example 2b Write the sides in order from shortest to longest. mE = 180° – (90° + 22°) = 68° The smallest angle is D, so the shortest side is . The largest angle is F, so the longest side is . The sides from shortest to longest are

A triangle is formed by three segments, but not every set of three segments can form a triangle.

A certain relationship must exist among the lengths of three segments in order for them to form a triangle.

Example 3A: Applying the Triangle Inequality Theorem Tell whether a triangle can have sides with the given lengths. Explain. 7, 10, 19 No—by the Triangle Inequality Theorem, a triangle cannot have these side lengths.

Example 3B: Applying the Triangle Inequality Theorem Tell whether a triangle can have sides with the given lengths. Explain. 2.3, 3.1, 4.6    Yes—the sum of each pair of lengths is greater than the third length.

Check It Out! Example 3a Tell whether a triangle can have sides with the given lengths. Explain. 8, 13, 21 No—by the Triangle Inequality Theorem, a triangle cannot have these side lengths.

Check It Out! Example 3b Tell whether a triangle can have sides with the given lengths. Explain. 6.2, 7, 9    Yes—the sum of each pair of lengths is greater than the third side.

Example 4: Finding Side Lengths The lengths of two sides of a triangle are 8 inches and 13 inches. Find the range of possible lengths for the third side. Let x represent the length of the third side. Then apply the Triangle Inequality Theorem. x + 8 > 13 x + 13 > 8 8 + 13 > x x > 5 x > –5 21 > x Combine the inequalities. So 5 < x < 21. The length of the third side is greater than 5 inches and less than 21 inches.

Check It Out! Example 4 The lengths of two sides of a triangle are 22 inches and 17 inches. Find the range of possible lengths for the third side. Let x represent the length of the third side. Then apply the Triangle Inequality Theorem. x + 22 > 17 x + 17 > 22 22 + 17 > x x > –5 x > 5 39 > x Combine the inequalities. So 5 < x < 39. The length of the third side is greater than 5 inches and less than 39 inches.

Example 5: Travel Application The figure shows the approximate distances between cities in California. What is the range of distances from San Francisco to Oakland? Let x be the distance from San Francisco to Oakland. x + 46 > 51 x + 51 > 46 46 + 51 > x Δ Inequal. Thm. x > 5 x > –5 97 > x Subtr. Prop. of Inequal. 5 < x < 97 Combine the inequalities. The distance from San Francisco to Oakland is greater than 5 miles and less than 97 miles.

Let x be the distance from Seguin to Johnson City. Check It Out! Example 5 The distance from San Marcos to Johnson City is 50 miles, and the distance from Seguin to San Marcos is 22 miles. What is the range of distances from Seguin to Johnson City? Let x be the distance from Seguin to Johnson City. x + 22 > 50 x + 50 > 22 22 + 50 > x Δ Inequal. Thm. x > 28 x > –28 72 > x Subtr. Prop. of Inequal. 28 < x < 72 Combine the inequalities. The distance from Seguin to Johnson City is greater than 28 miles and less than 72 miles.

Lesson Quiz: Part I 1. Write the angles in order from smallest to largest. 2. Write the sides in order from shortest to longest. C, B, A

Lesson Quiz: Part II 3. The lengths of two sides of a triangle are 17 cm and 12 cm. Find the range of possible lengths for the third side. 4. Tell whether a triangle can have sides with lengths 2.7, 3.5, and 9.8. Explain. 5 cm < x < 29 cm No; 2.7 + 3.5 is not greater than 9.8. 5. Ray wants to place a chair so it is 10 ft from his television set. Can the other two distances shown be 8 ft and 6 ft? Explain. Yes; the sum of any two lengths is greater than the third length.

EXAMPLE 3 Write an indirect proof Write an indirect proof that an odd number is not divisible by 4. GIVEN : x is an odd number. PROVE : x is not divisible by 4. SOLUTION STEP 1 Assume temporarily that x is divisible by 4. This means that = n for some whole number n. So, multiplying both sides by 4 gives x = 4n. x 4

EXAMPLE 3 Write an indirect proof STEP 2 If x is odd, then, by definition, x cannot be divided evenly by 2. However, x = 4n so = = 2n. We know that 2n is a whole number because n is a whole number, so x can be divided evenly by 2. This contradicts the given statement that x is odd. x 2 4n STEP 3 Therefore, the assumption that x is divisible by 4 must be false, which proves that x is not divisible by 4.

GUIDED PRACTICE for Example 3 4. Suppose you wanted to prove the statement “If x + y = 14 and y = 5, then x = 9.” What temporary assumption could you make to prove the conclusion indirectly? How does that assumption lead to a contradiction? Assume temporarily that x = 9; since x + y = 14 and y = 5 are given, letting x = 9 leads to the contradiction 9 + 5 = 14. ANSWER

EXAMPLE 4 Prove the Converse of the Hinge Theorem Write an indirect proof of Theorem 5.14. GIVEN : AB DE BC EF AC > DF PROVE: m B > m E Proof : Assume temporarily that m B > m E. Then, it follows that either m B = m E or m B < m E.

EXAMPLE 4 Prove the Converse of the Hinge Theorem Case 1 If m B = m E, then B E. So, ABC DEF by the SAS Congruence Postulate and AC =DF. Case 2 If m B < m E, then AC < DF by the Hinge Theorem. Both conclusions contradict the given statement that AC > DF. So, the temporary assumption that m B > m E cannot be true. This proves that m B > m E.

Daily Homework Quiz 3. Suppose you want to write an indirect proof of this statement: “In ABC, if m A > 90° then ABC is not a right triangle.” What temporary assumption should start your proof? Assume ABC is a right triangle. ANSWER