Distance and Midpoint In The Coordinate Plane Objective: To use two dimensional coordinate systems to represent points, lines, line segments and figures. To derive and use formulas involving length and midpoint
Find the distance and midpoint between Point R and Point T
EXAMPLE FIND THE : 1) A ( 2, -4) and the midpoint between 𝑨𝑩 is (-7, -2). Find the coordinate of point B
Find the distance and midpoint COORDINATE SYSTEM Find the distance and midpoint y - axis 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 x - axis -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 -1 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14
COORDINATE SYSTEM QUADRANT II QUADRANT I (0, 0) QUADRANT III y - axis 14 13 12 11 10 9 8 7 6 5 4 3 2 1 QUADRANT II QUADRANT I (0, 0) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 x - axis -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 -1 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 QUADRANT III QUADRANT IV
COORDINATE SYSTEM (x, y) coordinate pair (- 12, 10) (5, 6) y - axis 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (x, y) coordinate pair (- 12, 10) (5, 6) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 x - axis -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 -1 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14
COORDINATE SYSTEM
COORDINATE SYSTEM y - axis x - axis 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 x - axis -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 -1 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14
COORDINATE SYSTEM y - axis x - axis 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 x - axis -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 -1 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14