Institut für Physik der Atmosphäre Ensemble Climate-Chemistry simulations for the past 40 years Volker Grewe and the DLR/MPI Team Institut für Physik der.

Slides:



Advertisements
Similar presentations
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre Investigation of mutual influences of greenhouse effect and changes of dynamic.
Advertisements

Climate Models.
Volcanoes Large volcanic eruptions with high SO2 content can release SO2 into the stratosphere. This SO2 eventually combined with water vapor to make.
Martin G. Schultz, MPI Meteorology, Hamburg GEMS proposal preparation meeting, Reading, Dec 2003 GEMS RG Global reactive gases monitoring and forecast.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Climate-Chemistry Interactions - User Requirements Martin Dameris DLR-Institut für.
Simulating the atmospheric composition during the last decades: Evaluation with long-term observational datasets and the impact of natural climate variability.
Water Vapor and Lapse Rate Feedbacks Neil Gordon ESP Seminar April 14, 2006.
Whitecaps, sea-salt aerosols, and climate Magdalena D. Anguelova Physical Oceanography Dissertation Symposium College of Marine Studies, University of.
The Stratospheric Chemistry and The Ozone Layer
Scientific Advisory Committee Meeting, November 25-26, 2002 Modeling of the Middle and Upper Atmosphere M. A. Giorgetta E. Manzini 1, M. Charron 2, H.
METO 637 LESSON 7. Catalytic Cycles Bates and Nicolet suggested the following set of reactions: OH + O 3 → HO 2 + O 2 HO 2 + O → OH + O 2 net reaction.
METO 637 Lesson 15. Polar meteorology In the winter months the poles are in perpetual darkness. This causes extremely cold temperatures in the stratosphere.
METO 637 Lesson 8. Perturbations of the stratosphere Testing our knowledge of the stratosphere comes from a comparison of the measured and predicted concentrations.
The Atmosphere: Oxidizing Medium In Global Biogeochemical Cycles EARTH SURFACE Emission Reduced gas Oxidized gas/ aerosol Oxidation Uptake Reduction.
Stratospheric Chemistry EPS March – 04 April 2011 Polar Stratospheric Clouds.
Urban Air Pollution, Tropospheric Chemistry, and Climate Change: An Integrated Modeling Study Chien Wang MIT.
Modeling of Stratospheric Ozone in the Climate System Steven Pawson GMAO, NASA GSFC Judith Perlwitz CIRES, CU/NOAA ESRL Richard S. Stolarski Atmospheric.
SETTING THE STAGE FOR: BIOSPHERE, CHEMISTRY, CLIMATE INTERACTIONS.
National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory Princeton, NJ Evolution of Stratospheric.
Introduction. A major focus of SCOUT-O3 is the tropics and a key issue here is testing how well existing global 3D models perform in this region. This.
Attribution of Stratospheric Temperature Trends to Forcings A coupled chemistry-climate model (CCM) study Richard S. Stolarski NASA GSFC In collaboration.
STRATOSPHERIC CHEMISTRY. TOPICS FOR TODAY 1.Review of stratospheric chemistry 2.Recent trends in stratospheric ozone and forcing 3.How will stratospheric.
CHAPMAN MECHANISM FOR STRATOSPHERIC OZONE (1930) O O 3 O2O2 slow fast Odd oxygen family [O x ] = [O 3 ] + [O] R2 R3 R4 R1.
Modeling and visualization software for the nowcasting of the middle atmosphere T. Egorova *, N. Hochmuth ***, E. Rozanov*, **, A.V. Shapiro *,**, A.I.
National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory Princeton, NJ Evolution of Stratospheric.
Effect of Stratospheric Water Vapor Change on Ozone Layer and Climate Wenshou Tian Martyn P. Chipperfield 1 Collage of the Atmospheric Science Lanzhou.
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre Dynamical chemical interactions in the stratosphere- chemistry and external forcings.
Next Gen AQ model Need AQ modeling at Global to Continental to Regional to Urban scales – Current systems using cascading nests is cumbersome – Duplicative.
Influence of the sun variability and other natural and anthropogenic forcings on the climate with a global climate chemistry model Martin Schraner Polyproject.
QUESTIONS 1.Based on the major source of OH described last class where do you expect OH formation to be high? 2.Why don’t reactions of hydrocarbons deplete.
Temperature trends in the upper troposphere/ lower stratosphere as revealed by CCMs and AOGCMs Eugene Cordero, Sium Tesfai Department of Meteorology San.
EOS CHEM. EOS CHEM Platform Orbit: Polar: 705 km, sun-synchronous, 98 o inclination, ascending 1:45 PM +/- 15 min. equator crossing time. Launch date.
Analysis of a simulation with prognostic ozone in ARPEGE-Climat Jean-François Royer, Hubert Teysseidre, Hervé Douville, Sophie Tyteca Meteo-France,
EOS CHEM. EOS-CHEM Platform Orbit: Polar: 705 km, sun-synchronous, 98 o inclination, ascending 1:45 PM +/- 15 min. equator crossing time. Launch date.
24 Global Ecology. Figure 24.2 A Record of Coral Reef Decline.
Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical.
1 UIUC ATMOS 397G Biogeochemical Cycles and Global Change Lecture 5: Atmospheric Structure / Earth System Don Wuebbles Department of Atmospheric Sciences.
24 Global Ecology. Global Biogeochemical Cycles Atmospheric CO 2 affects pH of the oceans by diffusing in and forming carbonic acid.
2. Climate: “average” weather conditions, but the average doesn’t stay steady. I.e. Ice ages, El Niño, etc. 1. Weather: state of the atmosphere at a given.
Fanglin Yang Work Done at Climate Research Group
Seasonal variability of UTLS hydrocarbons observed from ACE and comparisons with WACCM Mijeong Park, William J. Randel, Louisa K. Emmons, and Douglas E.
Microphysical simulations of large volcanic eruptions: Pinatubo and Toba Jason M. English National Center for Atmospheric Research (LASP/University of.
V/1 Atmospheric transport and chemistry lecture I.Introduction II.Fundamental concepts in atmospheric dynamics: Brewer-Dobson circulation and waves III.Radiative.
IAC ETH, 26 October 2004 Sub-project: Effects of Solar irradiance variability on the atmosphere (steady-state sensitivity study) Progress report (final)
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre H 2 O in models and observations Coupling of dynamics and atmospheric chemistry.
Recent Trend of Stratospheric Water Vapor and Its Impacts Steve Rieck, Ning Shen, Gill-Ran Jeong EAS 6410 Team Project Apr
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre total ozone fluctuations related to different influences Global Maps Mechanisms.
The evolution of climate modeling Kevin Hennessy on behalf of CSIRO & the Bureau of Meteorology Tuesday 30 th September 2003 Canberra Short course & Climate.
A modelling study on trends and variability of the tropospheric chemical composition over the last 40 years S.Rast(1), M.G.Schultz(2) (1) Max Planck Institute.
Transient simulations of the near past with interactive middle atmosphere chemistry climate models C. Brühl 1, B. Steil 1, E. Manzini 2, M. Giorgetta 3,
10-11 October 2006HYMN kick-off TM3/4/5 Modeling at KNMI HYMN Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the.
Status of MOZART-2 Larry W. Horowitz GFDL/NOAA MOZART Workshop November 29, 2001.
HYMN Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the biosphere GOCE-CT Status of TM model Michiel.
Damaging the Ozone Layer
1 UIUC ATMOS 397G Biogeochemical Cycles and Global Change Lecture 14: Methane and CO Don Wuebbles Department of Atmospheric Sciences University of Illinois,
Impact of solar UV variability on sudden stratospheric warming with LMDz-Reprobus A. Hauchecorne 1, S. Bekki 1, M. Marchand 1, C. Claud 2, P. Keckhut 1,
04/12/011 The contribution of Earth degassing to the atmospheric sulfur budget By Hans-F. Graf, Baerbel Langmann, Johann Feichter From Chemical Geology.
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre MIcrophysical Processes in the Stratosphere and their nonlinear interactions with.
Chemistry-Climate Interaction Studies in Japan Hajime Akimoto Atmospheric Composition Research Program Frontier Research System for Global Change Chemistry.
March 31, 2004BGC Working Group Interactive chemistry in CAM Jean-François Lamarque, D. Kinnison and S. Walters Atmospheric Chemistry Division NCAR.
Dynamical control of ozone transport and chemistry from satellite observations and coupled chemistry climate models Mark Weber 1, Sandip Dhomse 1, Ingo.
Troposphere Strastosphere D. H. Gas phase chemistry Scavenging processes Fossil fuel Emissions Biomass burning emissions Biogenic emissions Boundary layer.
March 9, 2004CCSM AMWG Interactive chemistry in CAM Jean-François Lamarque, D. Kinnison S. Walters and the WACCM group Atmospheric Chemistry Division NCAR.
Recent achievements and future perspectives in stratospheric research Francesco Cairo, Federico Fierli, Chiara Cagnazzo. Marcel Snels Consiglio Nazionale.
Chemistry-climate interactions in CCSM
Lupu, Semeniuk, Kaminski, Mamun, McConnell
Application Of KF-Convection Scheme In 3-D Chemical Transport Model
Chemistry, Aerosols, and Climate: Tropospheric Unified Simulation (CACTUS) Objective: to improve understanding of interactions between atmospheric chemistry,
大气圈地球化学及其环境效益.
Shiliang Wu1 Loretta J. Mickley1, Daniel J
Presentation transcript:

Institut für Physik der Atmosphäre Ensemble Climate-Chemistry simulations for the past 40 years Volker Grewe and the DLR/MPI Team Institut für Physik der Atmophäre DLR-Oberpfaffenhofen Germany Martin Dameris, Veronika Eyring, Fabian Mager, Michael Ponater, Tina Schnadt, Andrea Stenke - DLR Oberpfaffenhofen Benedikt Steil, Christoph Brühl, Patrick Jöckel - MPI- Mainz Marco Giorgetta, Claudia Timmreck, MPI-Hamburg

Institut für Physik der Atmosphäre ECHAM4.L39(DLR) = E39 Atmosphere circulation model Global spectral model with semi-Lagrangian advection of water vapour, cloud water and tracers Resolution: T30, 39 layers, top layer centered at 10 hPa (30 km) Parameterizations of radiation, clouds, precipitation, convection, diffusion CHEM = CChemistry-Module (family concept) Transported species: H 2 O, CH 4, N 2 O, HCl, H 2 O 2, CO, CH 3 O 2 H, ClONO 2, HNO 3 +NAT, ICE, ClO x, NOX, OX 37 species and 107 gas-phase reaction Methane oxidation, PSC formation, 4 heterogeneous reactions on PSCs Parameterization of dry/wet deposition, lightning and surface emissions Interactively coupled at every timestep E39/C Climate-Chemistry Model

Institut für Physik der Atmosphäre Coupling of Dyamics and Chemsitry in E39/C

Institut für Physik der Atmosphäre Simulation of the Earths atmosphere from 1960 to 2000 Simulation is based on climate chemistry model E39/C with additional forcings: Emissions of NO x, CO, CO 2, N 2 O, CH 4, CFCs, as observed or estimatd by IPCC QBO nudged in tropical stratosphere Volcanoes regarded (Agung, El Chichon, Pinatubo) for chemistry and radiation Observed sea surface temperatures (Hadley-GISS) 11 year solar cycle No other forcing, free running climate chemistry model

Institut für Physik der Atmosphäre Total Ozone [DU] High variability > than in time-slices Solar cycle in tropics Ozone hole starts 80s Global ozone -15 DU

Institut für Physik der Atmosphäre Tropospheric ozone column (DU) High variability Global increase: 4 DU Small effects on SH

Institut für Physik der Atmosphäre Simulated evolution of cloud to ground lightning 1960 to 2000 El Nino events

Institut für Physik der Atmosphäre Ensemble 50 hPa temperature

Institut für Physik der Atmosphäre Ensemble total ozone

Institut für Physik der Atmosphäre Ensemble tropospheric total ozone

Institut für Physik der Atmosphäre Lightning

Institut für Physik der Atmosphäre Summary CCM/CTM Models are ready for transient simulations ACCENT modelling acitivity: Ensemble simulations Capability of models (-> Comparison to measurements) Attribution perhaps possible? TemperatureTropospheric Ozone Column ? BUT

Institut für Physik der Atmosphäre Fully coupled CCM simulations require additional diagnostics in order to separate various effects. E.g. NOx and ozone tagging diagnostics

Institut für Physik der Atmosphäre Approach: Tagging of NO y and ozone molecules 1st step: For each source i=1,..., n (n=8) define a NO y tracer (X i ) 2nd step: For each NO y tracer define an ozone tracer (Y i ) and an ozone tracer (Y n+1 ) for ozone production by O 2 photolysis Attribution of ozone increase to NO x emissions

Institut für Physik der Atmosphäre

Institut für Physik der Atmosphäre

Institut für Physik der Atmosphäre

Institut für Physik der Atmosphäre Tropical past ozone changes 30S-30N hPa hPa Ozone tracer mass Lightning most important source for tropical ozone In UT: stratospheric intrusions also important

Institut für Physik der Atmosphäre Interannual variability in the tropics Solar cycle effects stratospheric ozone leading to weak UT ozone variations ( 5%) Stratospheric O 3 and lightning important for inter-annual variations Industry and land transportation responsible for trends Upper troposphere Lower troposphere