Institut für Physik der Atmosphäre Christian Keil Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany Forecast Quality Control Applying an.

Slides:



Advertisements
Similar presentations
DEPARTMENT OF LAND INFORMATION – SATELLITE REMOTE SENSING SERVICES CRCSI AC Workshop November 2005 Remote Sensing in Near-Real Time of Atmospheric.
Advertisements

Quantitative evaluation of regional precipitation forecasts using multi-dimensional remote sensing observations (QUEST) Nicole van Lipzig a, Susanne Crewell.
Institut für Physik der Atmosphäre POLDIRAD and LINET observations during COPS Martin Hagen and Hartmut Höller DLR Oberpfaffenhofen.
Precipitation in IGWCO The objectives of IGWCO require time series of accurate gridded precipitation fields with fine spatial and temporal resolution for.
Estimation of clouds in atmospheric models Tomislava Vukicevic CIRA/CSU and PAOS/CU.
Rainfall estimation for food security in Africa, using the Meteosat Second Generation (MSG) satellite. Robin Chadwick.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
Institut für Physik der Atmosphäre 1 Evaluation of a numerical thunderstorm study with POLDIRAD and lightning observations Oberpaffenhofen, 8 February.
A fast physical algorithm for hyperspectral sounding retrieval Zhenglong Li #, Jun Li #, Timothy J. and M. Paul Menzel # # Cooperative Institute.
Marc Schröder et al., FUB BBC2 Workshop, De Bilt, 10.´04 Problems related to absorption dependent retrievals and their validation Marc Schröder 1, Rene.
Simulating cloud-microphysical processes in CRCM5 Ping Du, Éric Girard, Jean-Pierre Blanchet.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Object-Oriented Best Member Selection in a Regional Ensemble Forecasting System Christian.
Stationary orographic cloud bands: Dynamic and sportive interests link satellite observations with mesoscale modeling Hans Volkert DLR, Institut für Physik.
AMS’04, Seattle, WA. January 12, 2004Slide 1 HYDROS Radiometer and Radar Combined Soil Moisture Retrieval Using Kalman Filter Data Assimilation X. Zhan,
Enhancement of Satellite-based Precipitation Estimates using the Information from the Proposed Advanced Baseline Imager (ABI) Part II: Drizzle Detection.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.
Multi-sensor and multi-scale data assimilation of remotely sensed snow observations Konstantinos Andreadis 1, Dennis Lettenmaier 1, and Dennis McLaughlin.
Evaluation of ECHAM5 General Circulation Model using ISCCP simulator Swati Gehlot & Johannes Quaas Max-Planck-Institut für Meteorologie Hamburg, Germany.
MICROWAVE RAINFALL RETRIEVALS AND VALIDATIONS R.M. GAIROLA, S. POHREL & A.K. VARMA OSD/MOG SAC/ISRO AHMEDABAD.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Institut für Physik der Atmosphäre On the Value of.
Slide 1 IPWG, Beijing, October 2008 Slide 1 Assimilation of rain and cloud-affected microwave radiances at ECMWF Alan Geer, Peter Bauer, Philippe.
Synthetic satellite images based on COSMO Caroline Forster, Tobias Zinner with contributions from Christian Keil, Luca Bugliaro, Françoise Faure.
Institut für Physik der Atmosphäre Predictability of precipitation determined by convection-permitting ensemble modeling Christian Keil and George C.Craig.
Institut für Physik der Atmosphäre WG4: Data Assimilation and Predictability George C. Craig DLR-Institut für Physik der Atmosphäre.
16/06/20151 Validating the AVHRR Cloud Top Temperature and Height product using weather radar data COST 722 Expert Meeting Sauli Joro.
10/05/041 Utilisation of satellite data in the verification of HIRLAM cloud forecasts Christoph Zingerle and Pertti Nurmi.
Institut für Physik der Atmosphäre ETReC 2007 Hans Volkert (for G. C. Craig) DLR-Institut für Physik der Atmosphäre.
The use of radar in evaluating precipitation in LMK and ARPS: two precipitation cases over Belgium 6 March 2007 International PhD-studens and Post-docs.
Assimilation of (satellite) cloud-information at the convective scale in an Ensemble Kalman Filter Annika Schomburg 1, Christoph Schraff 1, Africa Perianez.
Satellite basics Estelle de Coning South African Weather Service
Introduction and Methodology Daniel T. Lindsey*, NOAA/NESDIS/STAR/RAMMB Louie Grasso, Cooperative Institute for Research in the Atmosphere
WWOSC 2014 Assimilation of 3D radar reflectivity with an Ensemble Kalman Filter on a convection-permitting scale WWOSC 2014 Theresa Bick 1,2,* Silke Trömel.
Use of Humidity data from MT and other platforms for Science projects on Monsoon Cloud systems KUSUMA G RAO Space Sciences Indian Space Research Organization.
Forecasting and Numerical Weather Prediction (NWP) NOWcasting Description of atmospheric models Specific Models Types of variables and how to determine.
Orbit Characteristics and View Angle Effects on the Global Cloud Field
Dehydration in the Tropical Tropopause Layer of a Cloud- Resolving Model University of Reading, Department of Meteorology * DLR Oberpfaffenhofen, Institut.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss High Resolution Snow Analysis for COSMO
New Products from combined MODIS/AIRS Jun Li, Chian-Yi Liu, Allen Huang, Xuebao Wu, and Liam Gumley Cooperative Institute for Meteorological Satellite.
USING OF METEOSAT SECOND GENERATION HIGH RESOLUTION VISIBLE DATA FOR THE IMPOVEMENT OF THE RAPID DEVELOPPING THUNDERSTORM PRODUCT Oleksiy Kryvobok Ukrainian.
Algorithm and Software Development of Atmospheric Motion Vector Products for the GOES-R ABI Jaime M. Daniels 1, Wayne Bresky 2, Chris Velden 3, Iliana.
P1.85 DEVELOPMENT OF SIMULATED GOES PRODUCTS FOR GFS AND NAM Hui-Ya Chuang and Brad Ferrier Environmental Modeling Center, NCEP, Washington DC Introduction.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Southern Ocean cloud biases in ACCESS.
BBC Workshop DeBilt, 18.–19. October 2004 Reconstruction of three dimensional cloud fields from two dimensional input datasets Klemens Barfus & Franz H.
WATER VAPOR RETRIEVAL OVER CLOUD COVER AREA ON LAND Dabin Ji, Jiancheng Shi, Shenglei Zhang Institute for Remote Sensing Applications Chinese Academy of.
10/05/041 Satellite Data in the Verification of Model cloud forecasts Christoph Zingerle Tartu, 24. – 26. Jan HiRLAM mini workshop on clouds and.
Treatment of Small Scale Land Surface Heterogeneity for Atmospheric Modelling (SSSAM) Günther Heinemann (1) and Michael Kerschgens (2) 1 Meteorologisches.
Objective Evaluation of the Meso-NH Simulations during Hibiscus-Troccinox-Troccibras I.Forecasts for the TROCCINOX campaign II.Three case studies: 13 Feb,
Three real case simulations by Meso-NH validated against satellite observations J.-P. Chaboureau and J.-P. Pinty Laboratoire d’Aérologie, Toulouse 1.Elbe.
MCS Introduction Where? Observed reflectivity at 3km from
Satellite based instability indices for very short range forecasting of convection Estelle de Coning South African Weather Service Contributions from Marianne.
Challenges and Strategies for Combined Active/Passive Precipitation Retrievals S. Joseph Munchak 1, W. S. Olson 1,2, M. Grecu 1,3 1: NASA Goddard Space.
AGU Fall Meeting 2008 Multi-scale assimilation of remotely sensed snow observations for hydrologic estimation Kostas Andreadis, and Dennis Lettenmaier.
Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Physik der Atmosphäre Case Study: 1 st July 2010, 12:00 UTC.
Cloud property retrieval from hyperspectral IR measurements Jun Li, Peng Zhang, Chian-Yi Liu, Xuebao Wu and CIMSS colleagues Cooperative Institute for.
A physical initialization algorithm for non-hydrostatic NWP models using radar derived rain rates Günther Haase Meteorological Institute, University of.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
SeaWiFS Highlights November 2001 SeaWiFS Views the Colors of Spring Off the coast of Argentina, SeaWiFS viewed very colorful springtime waters on November.
Assimilating Cloudy Infrared Brightness Temperatures in High-Resolution Numerical Models Using Ensemble Data Assimilation Jason A. Otkin and Rebecca Cintineo.
The assimilation of satellite radiances in LM F. Di Giuseppe, B. Krzeminski,R. Hess, C. Shraff (1) ARPA-SIM Italy (2) IMGW,Poland (3)DWD, Germany.
SAL - Structure, Ampliutde, Location
Masaya Takahashi Meteorological Satellite Center,
I. Sanchez, M. Amodei and J. Stein Météo-France DPREVI/COMPAS
Japan Meteorological Agency / Meteorological Research Institute
GOES-R Risk Reduction Research on Satellite-Derived Overshooting Tops
Daniel Leuenberger1, Christian Keil2 and George Craig2
Objective Overshooting Top and Cold V Detection
PGE06 TPW Total Precipitable Water
Adaption of an entity based verification
Stratiform vs Convective
The Impact of Moist Singular Vectors and Horizontal Resolution on Short-Range Limited-Area Ensemble Forecasts for Extreme Weather Events A. Walser1) M.
Presentation transcript:

Institut für Physik der Atmosphäre Christian Keil Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany Forecast Quality Control Applying an Object-Oriented Approach Using Remote Sensing Information

Institut für Physik der Atmosphäre Motivation Meso-scale forecasting at high spatial resolution increases the variability of forecast weather phenomena, e.g. precipitation and cloud structures, and render the comparison of forecast fields with observations more difficult. A common problem of meso-scale forecast fields often stems from conditions where a weather system is properly developed in the model but improperly positioned. For misplacement errors, a direct measure of the displacement is likely to be more valuable than traditional measures, such as RMS error.

Institut für Physik der Atmosphäre Aim Here, a displacement measure is developed, that builds crucially on the pattern information contained in satellite observations. Tools 1.Lokal-Modell (LM; Δx=7km) of COSMO 2.Forward operator generating synthetic satellite imagery in LM (LMSynSat) 3.Objective Pattern Recognition Algorithm using Pyramidal Image Matching

Institut für Physik der Atmosphäre Lokal-Modell non-hydrostatic 325x325x35 GP meshsize 7km Param. subgrid-scale processes, i.e. moist convection (Tiedtke) grid-scale precip incl. cloud ice (since 09/03) progn. precipitation (since 04/04) progn. variables: u,v,w,T,p',qv,qc,qi,qs,qr

Institut für Physik der Atmosphäre Generation of synthetic satellite images in LM: LMSynSat RTTOV-7 radiative transfer model (Saunders et al, 1999) Input: 3D fields: T,qv,qc,qi,qs,clc,ozone surface fields: T_g, T_2m, qv_2m, fr_land Output: cloudy/clear-sky brightness temperatures for Meteosat7 (IR and WV channels) and Meteosat8 (eight channels) (Keil et al, 2005)

Institut für Physik der Atmosphäre Meteosat 8 (MSG) observations on 12 Aug 2004

Institut für Physik der Atmosphäre Meteosat 8 IR 10.8 versus Lokal-Modell

Institut für Physik der Atmosphäre Meteosat 8 (MSG) IR 10.8 versus Lokal-Modell Histogram of Brightness Temp.

Institut für Physik der Atmosphäre Pyramidal Image Matching 1.Project observed and simulated images to same grid 2.Coarse-grain both images by pixel averaging, then compute displacement vector field that maximizes correlation in brightness temperature; search area +/- 2 grain size 3.Repeat step 2 at successively finer scales 4.Displacement vector for every pixel results from the sum over all scales

Institut für Physik der Atmosphäre Image Matching: BT< -20°C and coarse grain Meteosat 8 IR Pixelelement = 16x16 LM GP

Institut für Physik der Atmosphäre Image Matching: BT< -20°C and coarse grain Lokal-ModellObserved Displacement vectors 1 Pixelelement = 16x16 LM GP

Institut für Physik der Atmosphäre Image Matching: successively finer scales 1 Pixelelement = 8x8 LM GP

Institut für Physik der Atmosphäre Image Matching: successively finer scales 1 Pixelelement = 4x4 LM GP

Institut für Physik der Atmosphäre Displacement vectors and matched image

Institut für Physik der Atmosphäre cloud amount (BT<T threshold ) of Meteosat and LM Designing a Quality Measure (i) M8 LM

Institut für Physik der Atmosphäre normalized mean displacement vector Designing a Quality Measure (ii)

Institut für Physik der Atmosphäre spatial correlation after matching Designing a Quality Measure (iii)

Institut für Physik der Atmosphäre directional variance of displacement vectors, i.e. divergence or convergence of vector field Designing a Quality Measure (iv)

Institut für Physik der Atmosphäre A new Quality Measure (iv) FQI = 0.33 * [ (1-LM/Sat) + + nordispl + (1-corr)]

Institut für Physik der Atmosphäre Summary & Outlook 1.Objective Forecast Quality Control with Meteosat observations is possible using * LMSynSat and * Pyramidal Image Matching Algorithm 2.Results presented for 12 August 2004 case study * LM seems to underestimate (high) cloud amount * Timing ok 3. Usage of radar data 4. New quality measure will be applied in the framework of a regional ensemble system (COSMO-LEPS)