The complete Lorentz Transformations Including the inverse (i

Slides:



Advertisements
Similar presentations
H6: Relativistic momentum and energy
Advertisements

Lecture 20 Relativistic Effects Chapter Outline Relativity of Time Time Dilation Length Contraction Relativistic Momentum and Addition of Velocities.
Classical Relativity Galilean Transformations
Relativistic Momentum In classical mechanics, the momentum of a particle is defined as a product of its mass and its velocity,. In an isolated system of.
1 PHYS 3313 – Section 001 Lecture #7 Wednesday, Feb. 5, 2014 Dr. Jaehoon Yu Relativistic Momentum and Energy Relationship between relativistic quantities.
Wednesday, Feb. 4, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Feb. 4, 2015 Dr. Jaehoon Yu Einstein’s.
Derivation of Lorentz Transformations
The Lorentz transformation equations Once again Ś is our frame moving at a speed v relative to S.
1 2.1The Need for Ether 2.2The Michelson-Morley Experiment 2.3Einstein’s Postulates 2.4The Lorentz Transformation 2.5Time Dilation and Length Contraction.
PHY 1371Dr. Jie Zou1 Chapter 39 Relativity (Cont.)
PHY 1371Dr. Jie Zou1 Chapter 39 Relativity (Cont.)
Chapter 37 Special Relativity. 37.2: The postulates: The Michelson-Morley experiment Validity of Maxwell’s equations.
Physics 334 Modern Physics Credits: Material for this PowerPoint was adopted from Rick Trebino’s lectures from Georgia Tech which were based on the textbook.
CHAPTER 2 Special Theory of Relativity
Announcements Homework: Supplemental Problems 2 nd Project is due at the final exam which is Tuesday May 5 at 1:30 – 3:30pm. A list of potential projects.
Physics 213 General Physics Lectures 20 & Last Meeting: Optical Instruments Today: Optics Practice Problems, Relativity (over two lectures)
The Lorentz Velocity Transformations defining velocities as: u x = dx/dt, u y = dy/dt, u’ x = dx’/dt’, etc. it is easily shown that: With similar relations.
2.1The Apparent Need for Ether 2.2The Michelson-Morley Experiment 2.3Einstein’s Postulates 2.4The Lorentz Transformation 2.5Time Dilation and Length Contraction.
Introduction to special relativity
Special Theory of Relativity
Page 1 Phys Baski Relativity I Topic #9: Special Relativity I Transformation of Variables between Reference Frames –Non-relativistic Galilean Transformation.
Special relativity.
Special Relativity Space and Time. Spacetime Motion in space is related to motion in time. Special theory of relativity: describes how time is affected.
1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Jan. 29, 2014 Dr. Jaehoon Yu Length Contraction Relativistic Velocity Addition The Twin Paradox Space-time.
Time Dilation We can illustrate the fact that observers in different inertial frames may measure different time intervals between a pair of events by considering.
Chapter 28 Special Relativity Events and Inertial Reference Frames An event is a physical “happening” that occurs at a certain place and time. To.
Chapter 28: Special Relativity
Lecture_06: Outline Special Theory of Relativity  Principles of relativity: length contraction, Lorentz transformations, relativistic velocity  Relativistic.
The Theory of Special Relativity. Learning Objectives  Einstein’s two postulates in his theory of special relativity: The principle of relativity. (Same.
Wed., Sept. 12, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Sept. 12, 2012 Dr. Jaehoon Yu Spacetime Diagram&
Monday, Feb. 9, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #6 Monday, Feb. 9, 2015 Dr. Jaehoon Yu Relativistic Velocity.
Module 10Energy1 Module 10 Energy We start this module by looking at another collision in our two inertial frames. Last time we considered a perfectly.
Consequences of Special Relativity Simultaneity: Newton’s mechanics ”a universal time scale exists that is the same for all observers” Einstein: “No universal.
Of the four fundamental forces choose the weakest one? a)Strong force b)Gravitational force c)Electromagnetic force d)Weak force.
Chapter 39 Relativity. A Brief Overview of Modern Physics 20 th Century revolution 1900 Max Planck Basic ideas leading to Quantum theory 1905 Einstein.
11.1 – Frames of Reference and Relativity
1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Sept. 11, 2013 Dr. Jaehoon Yu Time Dilation & Length Contraction Relativistic Velocity Addition Twin Paradox.
SPECIAL THEORY OF RELATIVITY. Inertial frame Fig1. Frame S’ moves in the +x direction with the speed v relative to frame S.
Derivation of Lorentz Transformations Use the fixed system K and the moving system K’ At t = 0 the origins and axes of both systems are coincident with.
Special Theory of Relativity. Galilean-Newtonian Relativity.
1 PHYS 3313 – Section 001 Lecture #4 Monday, Jan. 27, 2014 Dr. Jaehoon Yu Galilean Transformation Do we need Ether? Michelson-Morley Experiment Einstein’s.
Lecture 5: PHYS344 Homework #1 Due in class Wednesday, Sept 9 th Read Chapters 1 and 2 of Krane, Modern Physics Problems: Chapter 2: 3, 5, 7, 8, 10, 14,
PHYS344 Lecture 6 Homework #1 Due in class Wednesday, Sept 9 th Read Chapters 1 and 2 of Krane, Modern Physics Problems: Chapter 2: 3, 5, 7, 8, 10, 14,
PHYS344 Lecture 7 Problem set 2 due on Wednesday the 16 th in class. Krane, Chapter 2: Problems 25, 26, 32, 33, 37, 39, 40, 41, 42 We will cover relativistic.
PHYS 342: More info The TA is Meng-Lin Wu: His is His office hour is 10:30am to 12pm on Mondays His office is Physics.
Chapter 28 Special Relativity Events and Inertial Reference Frames An event is a physical “happening” that occurs at a certain place and time. To.
Course Business: PHYS344 Lecture 6
Administrative Details: PHYS 344
PHYS 3313 – Section 001 Lecture #9
Physics: Principles with Applications, 6th edition
Special Theory of Relativity
Special Theory of Relativity
PHYS 3313 – Section 001 Lecture #6
Lecture 4: PHYS 344 Homework #1 Due in class Wednesday, Sept 9th Read Chapters 1 and 2 of Krane, Modern Physics Problems: Chapter 2: 3, 5, 7, 8, 10, 14,
General Physics (PHY 2140) Lecture 25 Modern Physics Relativity
Relativistic Momentum
Inverse Lorentz transformation from primed to unprimed system
CHAPTER 2 Special Theory of Relativity
Chapter 37 Relativity.
Newtonian Relativity A reference frame in which Newton’s laws are valid is called an inertial frame Newtonian principle of relativity or Galilean invariance.
M.Sc. Integrated Phsics (Ist Semester) Special Theory of Relativity
Chapter 28: Special Relativity
Relativistic Momentum
RELATIVITY III SPECIAL THEORY OF RELATIVITY
The Lorentz Velocity Transformations
The Galilean Transformation
Special Relativity Chapter 1-Class4.
PHYS 3313 – Section 001 Lecture #8
The Lorentz Velocity Transformations
2.11: Relativistic Momentum Because physicists believe that the conservation of momentum is fundamental, we begin by considering collisions where.
Presentation transcript:

The complete Lorentz Transformations Including the inverse (i The complete Lorentz Transformations Including the inverse (i.e v replaced with –v; and primes interchanged)

2.5: Time Dilation and Length Contraction Consequences of the Lorentz Transformation: Time Dilation: Clocks in K’ run slow with respect to stationary clocks in K. Length Contraction: Lengths in K’ are contracted with respect to the same lengths stationary in K.

Same location (spark “on” then off”) Time Dilation To understand time dilation the idea of proper time must be understood: The term proper time,T0, is the time difference between two events occurring at the same position in a system as measured by a clock at that position. Same location (spark “on” then off”)

Length Contraction To understand length contraction the idea of proper length must be understood: Let an observer in each system K and K’ have a meter stick at rest in their own system such that each measures the same length at rest. The length as measured at rest is called the proper length. Added “their own system”; changed measure to measures

The Lorentz Velocity Transformations defining velocities as: ux = dx/dt, uy = dy/dt, u’x = dx’/dt’, etc. it is easily shown that: With similar relations for uy and uz:

The Lorentz Velocity Transformations In addition to the previous relations, the Lorentz velocity transformations for u’x, u’y , and u’z can be obtained by switching primed and unprimed and changing v to –v:

Twin Paradox

Atomic Clock Measurement Figure 2.20: Two airplanes took off (at different times) from Washington, D.C., where the U.S. Naval Observatory is located. The airplanes traveled east and west around Earth as it rotated. Atomic clocks on the airplanes were compared with similar clocks kept at the observatory to show that the moving clocks in the airplanes ran slower.

2.11: Relativistic Momentum Because physicists believe that the conservation of momentum is fundamental, we begin by considering collisions where there do not exist external forces and dP/dt = Fext = 0

Relativistic Momentum Frank (fixed or stationary system) is at rest in system K holding a ball of mass m. Mary (moving system) holds a similar ball in system K that is moving in the x direction with velocity v with respect to system K. Add paragraph from figure 2.29

Relativistic Momentum If we use the definition of momentum, the momentum of the ball thrown by Frank is entirely in the y direction: pFy = mu0 The change of momentum as observed by Frank is ΔpF = ΔpFy = −2mu0

According to Mary (the Moving frame) Mary measures the initial velocity of her own ball to be u’Mx = 0 and u’My = −u0. In order to determine the velocity of Mary’s ball as measured by Frank we use the velocity transformation equations:

Relativistic Momentum Before the collision, the momentum of Mary’s ball as measured by Frank (the Fixed frame) becomes Before For a perfectly elastic collision, the momentum after the collision is After The change in momentum of Mary’s ball according to Frank is (2.42) Spaced a bit more evenly (2.43) (2.44)

Relativistic Momentum (con’t) The conservation of linear momentum requires the total change in momentum of the collision, ΔpF + ΔpM, to be zero. The addition of Equations (2.40) and (2.44) clearly does not give zero. Linear momentum is not conserved if we use the conventions for momentum from classical physics even if we use the velocity transformation equations from the special theory of relativity. There is no problem with the x direction, but there is a problem with the y direction along the direction the ball is thrown in each system.

Relativistic Momentum (con’t) Rather than abandon the conservation of linear momentum, let us look for a modification of the definition of linear momentum that preserves both it and Newton’s second law. To do so requires reexamining mass to conclude that: Relativistic momentum (2.48)

Relativistic Momentum (con’t) Some physicists like to refer to the mass in Equation (2.48) as the rest mass m0 and call the term m = γm0 the relativistic mass. In this manner the classical form of momentum, m, is retained. The mass is then imagined to increase at high speeds. Most physicists prefer to keep the concept of mass as an invariant, intrinsic property of an object. We adopt this latter approach and will use the term mass exclusively to mean rest mass.

Relativistic Mass-Energy Equivalence