SILICON PIXELS DETECTOR FORCED CONVECTION COOLING TEST COOLING PRINCIPLE Vittore Carassiti, Marco Statera, Ferruccio Petrucci, Luca Landi, Stefano Squerzanti, Stefano Chiozzi, Manuel Bolognesi, Michele Melchiorri, Claudio Padoan CERN , 11/12/2007
Vittore Carassiti - INFN FE SUMMARY DESIGN CONCEPT DESIGN DEVELOPMENT TEST SETUP PEOPLE INVOLVED NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
Vittore Carassiti - INFN FE DESIGN CONCEPT THE DESIGN OF THE DETECTOR REQUIRES TO MINIMIZE THE MATERIAL BUDGET THE COOLING SYSTEM CONCEPT DESIGN FOLLOWS THE SAME REQUIREMENT NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
STARTING DESIGN CONCEPT - 1 Nr ELEMENT THERMAL CONDUCTIVITY (W/mK) THICKNESS (mm) 1 K1100 CARBON FIBER 1000 0,1 2 THERMAL COMPOUND 8,7* 0,2 3 PIXELS 205 4 BUMPS 0,4** 0,01 5 SENSORS COOLING PLATE HEAT FLUX CONDUCTIVE COOLING THIN COOLING PLATE + COOLING CIRCUIT SURROUNDING THE DETECTOR NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE
STARTING DESIGN CONCEPT -2 Cooling system BOUNDARY CONDITIONS SURFACE COLLECTING THE POWER SCP = 27 x60 mm^2 HEAT FLUX UNIFORM HF = 2 W/cm^2 = 2E+04 W/m^2 Supporting plate Heat flux TEMPERATURE DISTRIBUTION ON THE DETECTOR NOT UNIFORM (>30°C) NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE
MOVING TOWARD A DIFFERENT COOLING CONCEPT - 1 CONVECTIVE COOLING USING A NITROGEN GAS FLOW AND THIN FLAT WALLS CONVECTION COEFFICENT = 55 W/m^2K MAX DETECTOR TEMP = 2,6 °C GOOD TEMPERATURE UNIFORMITY COOLING FLOW NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE
MOVING TOWARD A DIFFERENT COOLING CONCEPT - 2 MAX DISPL = 1,3 mm MAX STRESS = 700 Mpa WALL THICKNESS = 0,2 mm PRESSURE INSIDE = 0,1 MPa THE FLAT WALL NEEDS A THICKNESS > 0,2 mm TOO MUCH MATERIAL !! NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE
Vittore Carassiti - INFN FE THE DEVELOPED DESIGN – 1 SHARING THE JOBS : CYLINDRICAL WALLS SUPPORTING THE PRESSURE FLAT WALLS DEFINING THE FLOW CROSS SECTION CHOSEN MATERIAL = KAPTON TYPE H THINNER THICKNESSES REQUIRED : CYLINDRICAL WALL = 40 MICRONS FLAT WALL = 10 MICRONS ROUND WALL KAPTON RADIATION LENGTH = 28,6 cm COOLING VESSEL RADIATION LENGTH = 0,035% Xo FLAT WALL NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE
Vittore Carassiti - INFN FE THE DEVELOPED DESIGN - 2 MAKING THE PARTS ALL PARTS MADE BY FERRARA WORKSHOP NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
TESTS @ ROOM TEMPERATURE THE DEVELOPED DESIGN – 3 TESTS @ ROOM TEMPERATURE THE FOLLOWING TESTS HAVE BEEN DONE : KAPTON CREEP KAPTON FAILURE PRESSURE QUALITY OF THE JOINT KAPTON-RESIN-ALUMINUM NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
TEST 1 -BONDING ALUMINUM FRAME & KAPTON FOIL PREPARATION OF THE JOINTS : ALUMINUM JOINT ABRADED AND DEGREASED KAPTON JOINT LIGHTLY ABRADED AND DEGREASED CURING TIME : 16 h @ 40°C NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
TEST 2 - BONDING ALUMINUM FRAME & KAPTON FOIL NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
TEST 3 - KAPTON CREEP TEST Working pressure Wp = 1 bar Test pressure Tp = 2Wp = 2 bar AFTER TWO WEEKS @ Tp NO EVIDENCE OF CREEP NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
TEST 4 - KAPTON FAILURE PRESSURE STRESS ON THE VESSEL BOUNDARY CONDITIONS Pi = 0,1 Mpa (inner pressure) Pe = 0 (outher pressure) s = 5E-05 m (wall thickness) Di = 47E-03 m (inner diameter) FAILURE PRESSURE CALCULATION EQUIVALENT TENSILE STRESS (Guest criterion) NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
TEST 5 - JOINT KAPTON-RESIN-ALUMINUM LENGTH OF THE OVERLAP CALCULATION NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
TEST BENCH & READUT SYSTEM VACUUM POWER & TEMPERATURES FLOW RATE NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
OPTIMIZING THE GAS INJECTION -1 Injection channels : Share the flow rate & avoid the temperature drop on the inner edge of the detector lateral channels : the flow is injected cooled until the exit NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
OPTIMIZING THE GAS INJECTION - 2 SILICON WINDOW DETECTOR MOCK UP & DISTRIBUTING CHANNELS THERMO-CAMERA NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
COMPARING THE THERMOCAMERA RESULTS WITH THE THERMAL MODEL THERMOCAMERA IMAGE NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
THE TESTED PROTOTYPE REALIZATION THE PROTOTYPE ROUND WALLS = 40 microns FLAT WALLS = 10 microns CROSS SECTION = 8x46 mm^2 NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
TESTING THE WIRES STABILITY UNDER GAS FLOW (6 groups of 10 wires) NITROGEN FLOW RATE RANGE : FROM 0 TO 12 m^3/h (1,5 the nominal rate) ; THE WIRES ARE STEADY NA62 GTK Meeting 02.12.2011, CERN Vittore Carassiti - INFN FE CERN , 11/12/2007
Design, simulation, tests, development & construction Vittore CARASSITI (mech. service) Marco STATERA (vacuum & cryo service) Manuel BOLOGNESI (electr. service) Stefano CHIOZZI (electr. service) Angelo COTTA RAMUSINO (electr. service) Luca LANDI (mech. service) Roberto MALAGUTI (electr. service) Michele MELCHIORRI (mech. service) Claudio PADOAN (electr. service) Stefano SQUERZANTI (mech. service) NA62 GTK Meeting 12.07.2011, CERN CERN , 11/12/2007