Electric Flux & Gauss Law

Slides:



Advertisements
Similar presentations
Conductors in Electrostatic Equilibrium
Advertisements

Announcements Monday guest lecturer: Dr. Fred Salsbury. Solutions now available online. Will strive to post lecture notes before class. May be different.
Physics 24-Winter 2003-L031 Gausss Law Basic Concepts Electric Flux Gausss Law Applications of Gausss Law Conductors in Equilibrium.
Continuous Charge Distributions
Charge and Electric Flux. Electric Flux A closed surface around an enclosed charge has an electric flux that is outward on inward through the surface.
Chapter 24 Gauss’s Law.
Chapter 23 Gauss’ Law.
Chapter 24 Gauss’s Law.
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
Chapter 24 Gauss’s Law.
Chapter 23 Gauss’s Law.
Nadiah Alanazi Gauss’s Law 24.3 Application of Gauss’s Law to Various Charge Distributions.
From Chapter 23 – Coulomb’s Law
Gauss’ Law. Class Objectives Introduce the idea of the Gauss’ law as another method to calculate the electric field. Understand that the previous method.
Summer July Lecture 3 Gauss’s Law Chp. 24 Cartoon - Electric field is analogous to gravitational field Opening Demo - Warm-up problem Physlet /webphysics.davidson.edu/physletprob/webphysics.davidson.edu/physletprob.
Chapter 24 Gauss’s Law.
Electric Field Lines - a “map” of the strength of the electric field. The electric field is force per unit charge, so the field lines are sometimes called.
Fig 24-CO, p.737 Chapter 24: Gauss’s Law قانون جاوس 1- Electric Flux 2- Gauss’s Law 3-Application of Gauss’s law 4- Conductors in Electrostatic Equilibrium.
Gauss’s Law The electric flux through a closed surface is proportional to the charge enclosed The electric flux through a closed surface is proportional.
Definitions Flux—The rate of flow through an area or volume. It can also be viewed as the product of an area and the vector field across the area Electric.
Chapter 21 Gauss’s Law. Electric Field Lines Electric field lines (convenient for visualizing electric field patterns) – lines pointing in the direction.
1 Gauss’s Law For r > a Reading: Chapter Gauss’s Law Chapter 28.
Faculty of Engineering Sciences Department of Basic Science 5/26/20161W3.
a b c Field lines are a way of representing an electric field Lines leave (+) charges and return to (-) charges Number of lines leaving/entering charge.
Dr. Jie ZouPHY Chapter 24 Gauss’s Law (cont.)
Chapter 24 Gauss’s Law. Let’s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to.
Lecture 2 The Electric Field. Chapter 15.4  15.9 Outline The Concept of an Electric Field Electric Field Lines Electrostatic Equilibrium Electric Flux.
Electricity So Far… AP Physics C. Coulomb’s Law and Electric Fields Due to Point Charges (Ch 21) The force between two electric charges which are motionless.
CHAPTER 24 : GAUSS’S LAW 24.1) ELECTRIC FLUX
Chapter 24 Gauss’s Law. Intro Gauss’s Law is an alternative method for determining electric fields. While it stem’s from Coulomb’s law, Gauss’s law is.
Review on Coulomb’s Law and the electric field definition Coulomb’s Law: the force between two point charges The electric field is defined as The force.
3/21/20161 ELECTRICITY AND MAGNETISM Phy 220 Chapter2: Gauss’s Law.
Charles Allison © 2000 Chapter 22 Gauss’s Law.. Charles Allison © 2000 Problem 57.
Review on Coulomb’s Law and the electric field definition
Fig 24-CO, p.737 Chapter 24: Gauss’s Law قانون جاوس 1- Electric Flux 2- Gauss’s Law 3-Application of Gauss’s law 4- Conductors in Electrostatic Equilibrium.
Slide 1Fig 24-CO, p.737 Chapter 24: Gauss’s Law. Slide 2 INTRODUCTION: In the preceding chapter we showed how to use Coulomb’s law to calculate the electric.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
24.2 Gauss’s Law.
Chapter 22 Gauss’s Law Electric charge and flux (sec & .3)
Gauss’s Law Basic Concepts Electric Flux Gauss’s Law
Ch 24 – Gauss’s Law Karl Friedrich Gauss
Gauss’s Law.
ACTIVE LEARNING ASSIGNMENT Engineering Electromegnetics ( )
Gauss’s Law Chapter 24.
Gauss’s Law Gauss’s law uses symmetry to simplify electric field calculations. Gauss’s law also gives us insight into how electric charge distributes itself.
Gauss’s Law ENROLL NO Basic Concepts Electric Flux
PHYS 1444 – Section 003 Lecture #5
Reading: Chapter 28 For r > a Gauss’s Law.
Using Symmetry to Solve really complex vector calculus. . .
15.6 Conductors in Electrostatic Equilibrium
TOPIC 3 Gauss’s Law.
Chapter 21 Gauss’s Law.
Chapter 22 Gauss’s Law HW 4: Chapter 22: Pb.1, Pb.6, Pb.24,
Gauss’s Law Chapter 24.
Chapter 23 Gauss’s Law.
Question for the day Can the magnitude of the electric charge be calculated from the strength of the electric field it creates?
From last time… Motion of charged particles
Chapter 24 - Summary Gauss’s Law.
Norah Ali Al-moneef King Saud university
to a positively charged glass rod
Chapter 23 Gauss’ Law Key contents Electric flux
Chapter 23 Gauss’s Law.
Physics for Scientists and Engineers, with Modern Physics, 4th edition
Chapter 22 Gauss’s Law The Study guide is posted online under the homework section , Your exam is on March 6 Chapter 22 opener. Gauss’s law is an elegant.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Gauss’s Law.
Chapter 22 Gauss’s Law The Study guide is posted online under the homework section , Your exam is on March 6 Chapter 22 opener. Gauss’s law is an elegant.
Example 24-2: flux through a cube of a uniform electric field
Chapter 23 Gauss’s Law.
Presentation transcript:

Electric Flux & Gauss Law

Electric Flux 4.1 The Electric Flux due to an Electric Field   4.1 The Electric Flux due to an Electric Field 4.2 The Electric Flux due to a point charge 4.3 Gaussian surface 4.4 Gauss’s Law 4.5 Gauss’s law and Coulomb’s law 4.6 Conductors in electrostatic equilibrium 4.7 Applications of Gauss’s law 4.8 Solution of some selected problems 4.9 Story Problems

The Electric Flux due to an Electric Field We have already shown how electric field can be described by lines of force.  A line of force is an imaginary line drawn in such a way that its direction at any point is the same as the direction of the field at that point.  Field lines never intersect, since only one line can pass through a single point. The Electric flux (ɸ) is a measure of the number of electric field lines penetrating some surface of area A. الفيض الكهربائي هو كمية فيزيائية قياس لعدد خطوط المجال الكهربائي التي تخترق مساحة عمودية مقدارها A

Case one: The electric flux for a plan surface perpendicular to a uniform electric field اذا كان مستوى السطح عموديا على المجال الكهربائي:- To calculate the electric flux we recall that the number of lines per unit area is proportional to the magnitude of the electric field.  Therefore, the number of lines penetrating the surface of area A is proportional to the product EA.  The product of the electric filed E and the surface area A perpendicular to the field is called the electric flux ɸ. عدد الخطوط لوحدة المساحة تتناسب طرديا مع مقدار المجال الكهربائي ولذلك فان عدد الخطوط التي تخترق السطح لة مساحة تتناسب طرديا مع EA. حاصل ضرب.ɸ العمودي على المجال يسمى بالفيض الكهربائي EA. وحاصل الضرب The electric flux ɸ has a unit of N.m2/C. Fig: The electric flux for a plan surface perpendicular to a uniform electric field

Case Two The electric flux for a plan surface makes an angle ɵ to a uniform electric field Note that the number of lines that cross-area is equal to the number that cross the projected area A`, which is perpendicular to the field.  عدد الخطوط التي تعبر مساحة من السطح تكون مساوية لعدد الخطوط التي تعبر مسقط المساحة العمودية على المجال. From the figure we see that the two area are related by A`=Acos ɵ.  عندما يميل السطح بزاوية على خطوط المجال يعطى بالقانون التالي The flux is given by: = E A cosɵ .Where ɵ is the angle between the electric field E and the normal to the surface A يكون الفيض ذا قيمة عظمى عندما يكون السطح عموديا على المجال ɵ=0 يكون الفيض ذا قيمة صغرى عندما يكون السطح موازيا للمجال 90ɵ= المتجة هو متجة المساحة وهو عموديا دائما على المساحة وطولة يعبر عن مقدار المساحة Fig. The electric flux for a plan surface makes an angle ɵ to a uniform electric field

Fig. In general the electric field is non uniform over the surface Case Three In general the electric field is non uniform over the surface The flux is calculated by integrating the normal component of the field over the surface in question. يمكن حساب الفيض في هذة الحالة بتكامل المركبة العمودية المجال على السطح The net flux through the surface is proportional to the net number of lines penetrating the surface الفيض الكلي خلال السطح يتناسب مع محصلة عدد خطوط المجال الخارجة من السطح (إذا كانت الشحنة net number of lines والمقصود بموجبة) - عدد الخطوط الداخلة إلى السطح (إذا كانت الشحنة سالبة). Fig. In general the electric field is non uniform over the surface

The Electric Flux due to a point charge To calculate the electric flux due to a point charge we consider an imaginary closed spherical surface with the point charge in the center figure , this surface is called gaussian surface. الفيض الكهربائي نتيجة نقطة مشحون نفرض سطح كروي مغلق وتوجد شحنة بالمركز هذا السطح يعرف سطح جاوس ولذا فان الفيض الكهربائي يعطى بالقانون التالي

Fig. The Electric Flux due to a point charge Note that the net flux through a spherical gaussian surface is proportional to the charge q inside the surface. الفيض الكهربائي خلال سطح جاوس الدائري يتناسب طرديا مع مقدار الشحنة الموجودة بداخلة   Fig. The Electric Flux due to a point charge

Gaussian surface Consider several closed surfaces as shown in figure surrounding a charge Q as in the figure below.  The flux that passes through surfaces S1, S2 and S3 all has a value q/ᶓ.  Therefore we conclude that the net flux through any closed surface is independent of the shape of the surface. اعتبر عدة اسطح مغلقة بداخلها شحنة الفيض الكهربائي المار خلال هذة الأسطح = Q/ϵ الفيض الكلي خلال أي سطح مغلق لايعتمد على شكل السطح.   Fig. Gaussian surface

Consider a point charge located outside a closed surface as shown in figure.  We can see that the number of electric field lines entering the surface equal the number leaving the surface.  اذا تم وضع شحنة خارج سطح مغلق نلاحظ عدد خطوط المجال الكهربائي الداخل الى السطح =عدد خطوط المجال الخارجة منة. Therefore the net electric flux in this case is zero, because the surface surrounds no electric charge. الفيض الكلي الناتج في هذة الحالة = صفر لان السطح لايحيط بالشحنة الكهربائية Fig.Gaussian surface

Gauss’s Law Gauss law is a very powerful theorem, which relates any charge distribution to the resulting electric field at any point in the vicinity of the charge.  As we saw the electric field lines means that each charge q must have q/ ᶓ flux lines coming from it.  This is the basis for an important equation referred to as Gauss’s law.  Note the following facts. خطوط المجال لاي شحنة يجب ان تساوي q/ ᶓ.خط فيض قادم من هذة الشحنة .وهذا هو الأساس لقاعدة هامة تعرف بقانون جاوس.

If there are charges q1, q2, q3, If there are charges q1, q2, q3, ......qn inside a closed (gaussian) surface, the total number of flux lines coming from these charges will be (q1 + q2 + q3 + ....... +qn)/ᶓ اذا كانت هذة الشحنات q1, q2, q3, ......qn داخل سطح مغلق يسمى سطح جاووس فان عدد خطوط الفيض الكلي الناتج عن هذة الشحنات The number of flux lines coming out of a closed surface is the integral of  over the surface, We can equate both equations to get Gauss law which state that the net electric flux through a closed gaussian surface is equal to the net charge inside the surface divided by ᶓ Gauss’s law  where qin is the total charge inside the gaussian surface. بما ان عدد خطوط الفيض الكهربائي لاي سطح مغلق عبارة عن تكامل المقدار على السطح أي:

Gauss’s law Gauss’s law states that the net electric flux through any closed gaussian surface is equal to the net electric charge inside the surface divided by the permittivity. قانون جاوس ينص على ان الفيض الكلي خارج من أي سطح جاوس = مجموع من الشحنات الكهربائية داخل هذا السطح مقسوما على سماحية الفراغ.  

Gauss’s law and Coulomb’s law We can deduce Coulomb’s law from Gauss’s law by assuming a point charge q, to find the electric field at point or points a distance r from the charge we imagine a spherical gaussian surface of radius r and the charge q at its center as shown in figure

Because E is constant for all points on the sphere, it can be factored from the inside of the integral sign, then   Now put a second point charge qo at the point, which E is calculated.  The magnitude of the electric force that acts on it F = Eqo

Conductors in electrostatic equilibrium A good electrical conductor, such as copper, contains charges (electrons) that are free to move within the material.  When there is no net motion of charges within the conductor, the conductor is in electrostatic equilibrium.

Conductor in electrostatic equilibrium has the following properties 1. Any excess charge on an isolated conductor must reside entirely on its surface. أي شحنة زائدة على موصل معزول تتواجد كلية على سطحة 2. The electric field is zero everywhere inside the conductor. المجال الكهربائي =صفر عند أي نقطة داخل الموصل

3- The electric field just outside a charged conductor is perpendicular to its surface E =σ /ϵ 4-On an irregularity shape conductor, change tends to accumulate at sharp points.

Steps which should be followed in solving problems The gaussian surface should be chosen to have the same symmetry as the charge distribution. 2. The dimensions of the surface must be such that the surface includes the point where the electric field is to be calculated. 3.  From the symmetry of the charge distribution, determine the direction of the electric field and the surface area vector dA, over the region of the gaussian surface.   4.  Write E.dA as E dA cos ɵ and divide the surface into separate regions if necessary.   5.  The total charge enclosed by the gaussian surface is dq = ʃdq, which is represented in terms of the charge density ( dq = λdx for line of charge, dq = σdA for a surface of charge, dq = ρdv for a volume of charge).

4.7 Applications of Gauss’s law