Objectives Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least degree with given roots. Identify all of the.

Slides:



Advertisements
Similar presentations
Fundamental Theorem of Algebra
Advertisements

Finding Real Roots of Polynomial Equations 6-5
EXAMPLE 3 Use zeros to write a polynomial function Write a polynomial function f of least degree that has rational coefficients, a leading coefficient.
Warm up Use the Rational Root Theorem to determine the Roots of : x³ – 5x² + 8x – 6 = 0.
Objectives Fundamental Theorem of Algebra 6-6
9.9 The Fundamental Theorem of Algebra
4-5, 4-6 Factor and Remainder Theorems r is an x intercept of the graph of the function If r is a real number that is a zero of a function then x = r.
GUIDED PRACTICE for Example How many solutions does the equation
Real Zeros of a Polynomial Function Objectives: Solve Polynomial Equations. Apply Descartes Rule Find a polynomial Equation given the zeros.
6.6 The Fundamental Theorem of Algebra
Objectives Identify the multiplicity of roots.
1 Using the Fundamental Theorem of Algebra.  Talk about #56 & #58 from homework!!!  56 = has -1 as an answer twice  58 = when you go to solve x 2 +
Ch 2.5: The Fundamental Theorem of Algebra
7.4 and 7.5 Solving and Zeros of Polynomials
Section 3.3 Theorems about Zeros of Polynomial Functions.
Warm Up. Find all zeros. Graph.. TouchesThrough More on Rational Root Theorem.
3.6 Alg II Objectives Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least degree with given roots. Identify.
Objectives Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least degree with given roots Identify all of the.
Essential Questions How do we use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least degree with given roots?
Section 3-6 Fundamental Theorem of Algebra
Holt McDougal Algebra 2 Finding Real Roots of Polynomial Equations Identify the multiplicity of roots. Use the Rational Root Theorem and the irrational.
Objectives Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least degree with given roots. Identify all of the.
Finding Real Roots of Polynomial Equations 3-5
6-5 & 6-6 Finding All Roots of Polynomial Equations Warm Up: Factor each expression completely. 1. 2y 3 + 4y 2 – x 4 – 6x 2 – : Use factoring.
Chapter Fundamental Algebra theorem. Objectives Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least.
Fundamental Theorem of Algebra Every polynomial function of positive degree with complex coefficients has at least one complex zero.
Holt McDougal Algebra Fundamental Theorem of Algebra Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least.
Holt McDougal Algebra 2 Fundamental Theorem of Algebra How do we use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation.
Section 6: Fundamental Theorem of Algebra Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least degree with.
Holt McDougal Algebra Fundamental Theorem of Algebra Intelligence is knowing that a tomato is a fruit; Wisdom is not putting it in a fruit salad.
Algebra 2. Solve for x Algebra 2 (KEEP IN MIND THAT A COMPLEX NUMBER CAN BE REAL IF THE IMAGINARY PART OF THE COMPLEX ROOT IS ZERO!) Lesson 6-6 The Fundamental.
Warm Up Factor completely. 1. 2y3 + 4y2 – 30y 2. 3x4 – 6x2 – 24
Warm Up Factor completely. 1. 2y3 + 4y2 – 30y 2y(y – 3)(y + 5)
1. What is the degree of f (x) = 8x6 – 4x5 + 3x2 + 2?
Finding Real Roots of Polynomial Equations 6-5
Warm Up Factor completely. 1. 2y3 + 4y2 – 30y 2y(y – 3)(y + 5)
Rational Root Theorem and Fundamental Theorem of Algebra
Finding Real Roots of Polynomial Equations 6-5
Warm-up Multiply the factors and write in standard form.
Rational Root Theorem and Fundamental Theorem of Algebra
Warm - Up Perform the operation and write the result in standard form
Warm Up Identify all the real roots of each equation.
Warm Up Identify all the real roots of each equation.
Fundamental Theorem of Algebra
Lesson 7.2: Finding Complex Solutions of Polynomial Equations
7.5 Zeros of Polynomial Functions
Warm Up Factor completely. 1. 2y3 + 4y2 – 30y 2y(y – 3)(y + 5)
Warm Up Identify all the real roots of each equation.
Warm Up Identify all the real roots of each equation.
Apply the Fundamental Theorem of Algebra
7.4 and 7.5 Solving and Zeros of Polynomials
Finding Real Roots of Polynomial Equations 3-5
Objectives Identify the multiplicity of roots.
Finding Real Roots of Polynomial Equations 3-5
Fundamental Theorem of Algebra
Warm Up Factor completely. 1. 2y3 + 4y2 – 30y 2y(y – 3)(y + 5)
Fundamental Theorem of Algebra
Finding Real Roots of Polynomial Equations 3-5
Finding Real Roots of Polynomial Equations 3-5
Finding Real Roots of Polynomial Equations
Warm Up Identify all the real roots of each equation.
Fundamental Theorem of Algebra
Fundamental Theorem of Algebra
Fundamental Theorem of Algebra
Fundamental Theorem of Algebra
Finding Real Roots of Polynomial Equations 6-5
Fundamental Thm. Of Algebra
5.6 Complex Zeros; Fundamental Theorem of Algebra
Fundamental Theorem of Algebra Roots/Zeros/X-Intercepts
Presentation transcript:

Objectives Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least degree with given roots. Identify all of the roots of a polynomial equation.

Warm Up: Happy Friday the 13th!!!! Find the zeros of the polynomial function P(x) = x3– 4x2– 4x + 16

You have learned several important properties about real roots of polynomial equations. You can use this information to write polynomial function when given in zeros.

Check It Out! Example 1 Write the simplest polynomial function with the given zeros. –2, 2, 4 If r is a zero of P(x), then x – r is a factor of P(x). P(x) = (x + 2)(x – 2)(x – 4) P(x) = (x2 – 4)(x – 4) Multiply the first two binomials. P(x) = x3– 4x2– 4x + 16 Multiply the trinomial by the binomial.

Write the simplest polynomial function with the given zeros. Check It Out! Example 1b Write the simplest polynomial function with the given zeros. 0, , 3 2 3 If r is a zero of P(x), then x – r is a factor of P(x). P(x) = (x – 0)(x – )(x – 3) 2 3 P(x) = (x2 – x)(x – 3) 2 3 Multiply the first two binomials. Multiply the trinomial by the binomial. P(x) = x3– x2+ 2x 11 3

Notice that the degree of the function in Example 1 is the same as the number of zeros. This is true for all polynomial functions. However, all of the zeros are not necessarily real zeros. Polynomials functions, like quadratic functions, may have complex zeros that are not real numbers.

Using this theorem, you can write any polynomial function in factor form. To find all roots of a polynomial equation, you can use a combination of the Rational Root Theorem, the Irrational Root Theorem, and methods for finding complex roots, such as the quadratic formula.

Example 2: Finding All Roots of a Polynomial Solve x4 – 3x3 + 5x2 – 27x – 36 = 0 by finding all roots. The polynomial is of degree 4, so there are exactly four roots for the equation. Step 1 Use the rational Root Theorem to identify rational roots. ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18, ±36 p = –36, and q = 1.

Example 2 Continued Step 2 Graph y = x4 – 3x3 + 5x2 – 27x – 36 to find the real roots. Find the real roots at or near –1 and 4.

Example 2 Continued Step 3 Test the possible real roots. Test –1. The remainder is 0, so (x + 1) is a factor. –1 1 –3 5 –27 –36 –1 4 –9 36 1 –4 9 –36

Example 2 Continued The polynomial factors into (x + 1)(x3 – 4x2 + 9x – 36) = 0. 4 1 –4 9 –36 Test 4 in the cubic polynomial. The remainder is 0, so (x – 4) is a factor. 4 36 1 9

Example 2 Continued The polynomial factors into (x + 1)(x – 4)(x2 + 9) = 0. Step 4 Solve x2 + 9 = 0 to find the remaining roots. x2 + 9 = 0 x2 = –9 x = ±3i The fully factored form of the equation is (x + 1)(x – 4)(x + 3i)(x – 3i) = 0. The solutions are 4, –1, 3i, –3i.

Check It Out! Example 2 Solve x4 + 4x3 – x2 +16x – 20 = 0 by finding all roots. The polynomial is of degree 4, so there are exactly four roots for the equation. Step 1 Use the rational Root Theorem to identify rational roots. ±1, ±2, ±4, ±5, ±10, ±20 p = –20, and q = 1.

Check It Out! Example 2 Continued Step 2 Graph y = x4 + 4x3 – x2 + 16x – 20 to find the real roots. Find the real roots at or near –5 and 1.

Check It Out! Example 2 Continued Step 3 Test the possible real roots. Test –5. The remainder is 0, so (x + 5) is a factor. –5 1 4 –1 16 –20 –5 5 –20 20 1 –1 4 –4

Check It Out! Example 2 Continued The polynomial factors into (x + 5)(x3 – x2 + 4x – 4) = 0. 1 1 –1 4 –4 Test 1 in the cubic polynomial. The remainder is 0, so (x – 1) is a factor. 1 4 1 4

Check It Out! Example 2 Continued The polynomial factors into (x + 5)(x – 1)(x2 + 4) = 0. Step 4 Solve x2 + 4 = 0 to find the remaining roots. x2 + 4 = 0 x2 = –2 x = ±2i The fully factored form of the equation is (x + 5) (x – 1)(x + 2i)(x – 2i) = 0. The solutions are –5, 1, –2i, +2i).

Example 3: Writing a Polynomial Function with Complex Zeros Write the simplest function with zeros 2 + i, , and 1. Step 1 Identify all roots. By the Rational Root Theorem and the Complex Conjugate Root Theorem, the irrational roots and complex come in conjugate pairs. There are five roots: 2 + i, 2 – i, , , and 1. The polynomial must have degree 5.

Example 3 Continued Step 2 Write the equation in factored form. P(x) = [x – (2 + i)][x – (2 – i)](x – )[(x – ( )](x – 1) Step 3 Multiply. P(x) = (x2 – 4x + 5)(x2 – 3)(x – 1) = (x4 – 4x3+ 2x2 + 12x – 15)(x – 1) P(x) = x5 – 5x4+ 6x3 + 10x2 – 27x – 15

Check It Out! Example 3 Write the simplest function with zeros 2i, , and 3. 1+ 2 Step 1 Identify all roots. By the Rational Root Theorem and the Complex Conjugate Root Theorem, the irrational roots and complex come in conjugate pairs. There are five roots: 2i, –2i, , , and 3. The polynomial must have degree 5.

Check It Out! Example 3 Continued Step 2 Write the equation in factored form. P(x) = [ x - (2i)][x + (2i)][x - ( 1 + x )][x - (1 - x )](x - 3) Step 3 Multiply. P(x) = x5 – 5x4+ 9x3 – 17x2 + 20x + 12

Lesson Quiz: Part I Write the simplest polynomial function with the given zeros. 1. 2, –1, 1 2. 0, –2, 3. 2i, 1, –2 4. Solve by finding all roots. x4 – 5x3 + 7x2 – 5x + 6 = 0 x3 – 2x2 – x + 2 x4 + 2x3 – 3x2 – 6x x4 + x3 + 2x2 + 4x – 8 2, 3, i,–i