Date of download: 11/2/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Dynamics of Flow in a Mechanical Heart Valve: The Role of Leaflet Inertia and.
Advertisements

Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Study of the Velocity and Strain Fields in the Flow Through Prosthetic Heart Valves.
Date of download: 6/25/2016 Copyright © ASME. All rights reserved. From: The Effect of Gas Models on Compressor Efficiency Including Uncertainty J. Eng.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. From: Calibrated Coarse Grid-Finite Volume Method for the Fast Calculation of the Underhood.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of.
Date of download: 7/10/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Modeling of Supine Human and Transport System Under Whole-Body.
Date of download: 7/10/2016 Copyright © ASME. All rights reserved. From: Automated Generation of Linkage Loop Equations for Planar One Degree-of-Freedom.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Effect of Calibration Method on Tekscan Sensor Accuracy J Biomech Eng. 2008;131(3):
Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Transmission Loss of Variable Cross Section Apertures J. Vib. Acoust. 2014;136(4):
Date of download: 9/26/2017 Copyright © ASME. All rights reserved.
From: Analysis of a Porous Elastic Sheet Damper With a Magnetic Fluid
Date of download: 10/6/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/19/2017 Copyright © ASME. All rights reserved.
Date of download: 10/20/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/30/2017 Copyright © ASME. All rights reserved.
From: Hemodynamics of the Mouse Abdominal Aortic Aneurysm
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
From: Heat Exchanger Efficiency
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
From: Three-Dimensional-Printing of Bio-Inspired Composites
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/10/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/12/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 12/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/28/2017 Copyright © ASME. All rights reserved.
Date of download: 12/30/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 11/2/2017 Copyright © ASME. All rights reserved. From: Critical Damping Conditions for Third Order Muscle Models: Implications for Force Control J Biomech Eng. 2013;135(10):101010-101010-8. doi:10.1115/1.4025110 Figure Legend: Force control models of second-order mechanical systems. (a) Direct force control. (b) Indirect force control via position control. (c) Generalized impedance model of a second order mechanical system indicating the force fields that appear in the d'Alembert equation, Eq. (1).

Date of download: 11/2/2017 Copyright © ASME. All rights reserved. From: Critical Damping Conditions for Third Order Muscle Models: Implications for Force Control J Biomech Eng. 2013;135(10):101010-101010-8. doi:10.1115/1.4025110 Figure Legend: Third-order mechanical models of muscle-tendon systems. (a) Maxwell model (b) generalized impedance schematics of Maxwell model (c) Poynting-Thomson model (d) generalized impedance schematics of the PT model. (b) and (d) indicate the force fields that appear in the d'Alembert equation, Eq. (1). Each force field is a function of the mechanical paramenters of the elements that generate it.

Date of download: 11/2/2017 Copyright © ASME. All rights reserved. From: Critical Damping Conditions for Third Order Muscle Models: Implications for Force Control J Biomech Eng. 2013;135(10):101010-101010-8. doi:10.1115/1.4025110 Figure Legend: Discriminant of Poynting-Thomson model's characteristic polynomial shown as a function of muscle damping CθP for four values of tendon/muscle stiffness ratio κ (2.64, 4.85, 8, 10). The function is shown for both wrist (top) and elbow (bottom). For κ < 8 the discriminant is positive, independent of the value of CθP, which translate in a free oscillatory response of the system. If κ ≥ 8 a finite interval of damping values exists within which the system does not present an oscillatory free response.

Date of download: 11/2/2017 Copyright © ASME. All rights reserved. From: Critical Damping Conditions for Third Order Muscle Models: Implications for Force Control J Biomech Eng. 2013;135(10):101010-101010-8. doi:10.1115/1.4025110 Figure Legend: Roots of Poynting-Thomson model's characteristic polynomial shown as functions of the damping CθP for four values of tendon/muscle stiffness ratio κ (2.64, 4.85, 8, 10). The top row represents the real root; center and bottom rows represent the real and imaginary part of the two complex conjugate root, respectively.