Invest. Ophthalmol. Vis. Sci ;54(4): doi: /iovs Figure Legend:

Slides:



Advertisements
Similar presentations
Date of download: 6/1/2016 The Association for Research in Vision and Ophthalmology Copyright © All rights reserved. From: Optical Coherence Tomography.
Advertisements

Invest. Ophthalmol. Vis. Sci ;54(14):ORSF68-ORSF80. doi: /iovs
Invest. Ophthalmol. Vis. Sci ;49(1): doi: /iovs Figure Legend:
From: The Controlled-Environment Chamber: A New Mouse Model of Dry Eye
From: Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery Invest. Ophthalmol. Vis.
Invest. Ophthalmol. Vis. Sci ;54(3): doi: /iovs Figure Legend:
From: Modeling the Chronic Loss of Optic Nerve Axons and the Effects on the Retinal Nerve Fiber Layer Structure in Primary Disorder of Myelin Invest. Ophthalmol.
From: Clustering of Combined 24-2 and 10-2 Visual Field Grids and Their Relationship With Circumpapillary Retinal Nerve Fiber Layer Thickness Invest. Ophthalmol.
From: Targeted Administration into the Suprachoroidal Space Using a Microneedle for Drug Delivery to the Posterior Segment of the Eye Invest. Ophthalmol.
From: Microbead-Induced Ocular Hypertensive Mouse Model for Screening and Testing of Aqueous Production Suppressants for Glaucoma Invest. Ophthalmol. Vis.
From: Aqueous Angiography–Mediated Guidance of Trabecular Bypass Improves Angiographic Outflow in Human Enucleated Eyes Invest. Ophthalmol. Vis. Sci..
From: Development of a Rat Schematic Eye From In Vivo Biometry and the Correction of Lateral Magnification in SD-OCT Imaging Invest. Ophthalmol. Vis. Sci..
From: Stereo Photo Measured ONH Shape Predicts Development of POAG in Subjects With Ocular Hypertension Invest. Ophthalmol. Vis. Sci ;56(8):
From: Klf4 Regulates the Expression of Slurp1, Which Functions as an Immunomodulatory Peptide in the Mouse Cornea Invest. Ophthalmol. Vis. Sci ;53(13):
Invest. Ophthalmol. Vis. Sci ;52(5): doi: /iovs Figure Legend:
From: Cardiac-Gated En Face Doppler Measurement of Retinal Blood Flow Using Swept-Source Optical Coherence Tomography at 100,000 Axial Scans per Second.
From: Is Adaptation to Perceived Interocular Differences in Height Explained by Vertical Fusional Eye Movements? Invest. Ophthalmol. Vis. Sci ;54(7):
From: Effect of Mandarin Orange Yogurt on Allergic Conjunctivitis Induced by Conjunctival Allergen Challenge Invest. Ophthalmol. Vis. Sci ;58(7):
From: Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery Invest. Ophthalmol. Vis.
From: Upregulation of EphB2 and ephrin-B2 at the Optic Nerve Head of DBA/2J Glaucomatous Mice Coincides with Axon Loss Invest. Ophthalmol. Vis. Sci ;48(12):
From: Early Corneal Nerve Damage and Recovery Following Small Incision Lenticule Extraction (SMILE) and Laser In Situ Keratomileusis (LASIK) Invest. Ophthalmol.
From: Central Glaucomatous Damage of the Macula Can Be Overlooked by Conventional OCT Retinal Nerve Fiber Layer Thickness Analyses Trans. Vis. Sci. Tech..
Figure Legend: From: Lymphatic Markers in the Adult Human Choroid
From: High Glucose Induces Mitochondrial Dysfunction in Retinal Müller Cells: Implications for Diabetic Retinopathy Invest. Ophthalmol. Vis. Sci ;58(7):
From: Phenotypes and Biomarkers of Diabetic Retinopathy
Invest. Ophthalmol. Vis. Sci ;58(9): doi: /iovs Figure Legend:
Invest. Ophthalmol. Vis. Sci ;54(13): doi: /iovs Figure Legend:
From: Effect of Cataract Surgery on Optical Coherence Tomography Measurements and Repeatability in Patients With Non-Insulin–Dependent Diabetes Mellitus.
From: Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats Invest. Ophthalmol. Vis. Sci..
From: Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography Trans. Vis. Sci.
From: Assessment of Macular Function for Idiopathic Epiretinal Membranes Classified by Spectral-Domain Optical Coherence Tomography Invest. Ophthalmol.
From: Leber’s Hereditary Optic Neuropathy with Childhood Onset
From: Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons.
From: Multimodal Imaging of Macular Telangiectasia Type 2: Focus on Vascular Changes Using Optical Coherence Tomography Angiography Invest. Ophthalmol.
Invest. Ophthalmol. Vis. Sci ;48(12): doi: /iovs Figure Legend:
From: Macular Choroidal Thickness and Volume in Normal Subjects Measured by Swept-Source Optical Coherence Tomography Invest. Ophthalmol. Vis. Sci ;52(8):
From: Error Correction and Quantitative Subanalysis of Optical Coherence Tomography Data Using Computer-Assisted Grading Invest. Ophthalmol. Vis. Sci..
From: Early Corneal Nerve Damage and Recovery Following Small Incision Lenticule Extraction (SMILE) and Laser In Situ Keratomileusis (LASIK) Invest. Ophthalmol.
From: One-Year Outcome of 49-Channel Suprachoroidal–Transretinal Stimulation Prosthesis in Patients With Advanced Retinitis Pigmentosa Invest. Ophthalmol.
From: Defective Angiogenesis and Intraretinal Bleeding in Mouse Models With Disrupted Inner Retinal Lamination Invest. Ophthalmol. Vis. Sci ;57(4):
Invest. Ophthalmol. Vis. Sci ;50(7): doi: /iovs Figure Legend:
From: In Vivo Human Choroidal Vascular Pattern Visualization Using High-Speed Swept-Source Optical Coherence Tomography at 1060 nm Invest. Ophthalmol.
Invest. Ophthalmol. Vis. Sci ;54(2): doi: /iovs Figure Legend:
From: An Experimental Protocol of the Model to Quantify Traction Applied to the Retina by Vitreous Cutters Invest. Ophthalmol. Vis. Sci ;51(8):
From: A Frameshift Mutation in RPGR Exon ORF15 Causes Photoreceptor Degeneration and Inner Retina Remodeling in a Model of X-Linked Retinitis Pigmentosa.
From: Reduced Retina Microglial Activation and Improved Optic Nerve Integrity with Minocycline Treatment in the DBA/2J Mouse Model of Glaucoma Invest.
From: Efficacy and Safety of Human Retinal Progenitor Cells
From: Visual Acuities “Hand Motion” and “Counting Fingers” Can Be Quantified with the Freiburg Visual Acuity Test Invest. Ophthalmol. Vis. Sci ;47(3):
From: Construction of an Inexpensive, Hand-Held Fundus Camera through Modification of a Consumer “Point-and-Shoot” Camera Invest. Ophthalmol. Vis. Sci..
From: Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye Invest. Ophthalmol. Vis. Sci ;57(2):
From: The Retinal Disease Screening Study: Prospective Comparison of Nonmydriatic Fundus Photography and Optical Coherence Tomography for Detection of.
Invest. Ophthalmol. Vis. Sci ;57(6): doi: /iovs Figure Legend:
From: Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye Invest. Ophthalmol. Vis. Sci ;57(2):
Invest. Ophthalmol. Vis. Sci ;46(4): doi: /iovs Figure Legend:
From: Perception of Haidinger Brushes in Macular Disease Depends on Macular Pigment Density and Visual Acuity Invest. Ophthalmol. Vis. Sci ;57(3):
From: Evaluation of Time Domain and Spectral Domain Optical Coherence Tomography in the Measurement of Diabetic Macular Edema Invest. Ophthalmol. Vis.
Invest. Ophthalmol. Vis. Sci ;57(2): doi: /iovs Figure Legend:
Invest. Ophthalmol. Vis. Sci ;54(14):ORSF68-ORSF80. doi: /iovs
From: Disease Expression in Autosomal Recessive Retinal Dystrophy Associated With Mutations in the DRAM2 Gene Invest. Ophthalmol. Vis. Sci ;56(13):
From: Arrested Foveal Development in Preterm Eyes: Thickening of the Outer Nuclear Layer and Structural Redistribution Within the Fovea Invest. Ophthalmol.
From: Higher Contrast Requirement for Letter Recognition and Macular RGC+ Layer Thinning in Glaucoma Patients and Older Adults Invest. Ophthalmol. Vis.
From: Corneal Cross-Linking in Keratoconus Using the Standard and Rapid Treatment Protocol: Differences in Demarcation Line and 12-Month Outcomes Invest.
From: Activation of the Alternative Complement Pathway in Vitreous is Controlled by Genetics in Age-Related Macular Degeneration Invest. Ophthalmol. Vis.
From: Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography Invest. Ophthalmol.
From: Scanning Laser Polarimetry with Variable Corneal Compensation: Identification and Correction for Corneal Birefringence in Eyes with Macular Disease.
From: Central Glaucomatous Damage of the Macula Can Be Overlooked by Conventional OCT Retinal Nerve Fiber Layer Thickness Analyses Trans. Vis. Sci. Tech..
From: Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography Trans. Vis. Sci.
Trans. Vis. Sci. Tech ;6(4):5. doi: /tvst Figure Legend:
From: Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography Invest. Ophthalmol. Vis. Sci..
Invest. Ophthalmol. Vis. Sci ;55(7): doi: /iovs Figure Legend:
Presentation transcript:

From: Tomographic Features of Macula After Successful Macular Hole Surgery Invest. Ophthalmol. Vis. Sci.. 2013;54(4):2417-2428. doi:10.1167/iovs.12-10838 Figure Legend: Comparisons of the cross-sectional images of the retina obtained 6 months after macular hole surgery with ILM peeling by SD-OCT and TD-OCT. A 54-year-old woman presented with a stage 4 macular hole in her left eye, and the visual acuity was 20/50 preoperatively and 6 months after surgery (Case 2). ILM peeling was performed after staining with indocyanine green. (A) Color fundus photograph, (B, C) Horizontal B-scan images through the central fovea obtained with SD-OCT (B) and TD-OCT (C). (D, E) Vertical B-scan images through the central fovea obtained with SD-OCT (D) and TD-OCT (E). Horizontal and vertical green lines in (A) indicate the scan lines for the horizontal (B) and vertical (D) SD-OCT images. Horizontal and vertical orange lines in (A) indicate the scan lines for horizontal (C) and vertical (F) TD-OCT images. Blue crossed lines indicate the borders of the 4 quadrants used to count the number of arcuate striae. Scan lengths for SD-OCT and TD-OCT were 9 and 6 mm, respectively. In the SD-OCT images, blue arrowheads point to the inner retinal defects limited to the RNFL, and red arrowheads to the inner retinal defects that extend beyond the RNFL into the GCL and IPL. In the TD-OCT images, the blue and red arrowheads indicate the points corresponding to the points that are pointed to by the arrowheads in the SD-OCT images. The red arrowhead in the temporal macula (B) points to an area with a complete loss of the RNFL and GCL. The depth of this damage is not evident in the TD-OCT image (C). Date of download: 11/3/2017 The Association for Research in Vision and Ophthalmology Copyright © 2017. All rights reserved.