An upper limit to the masses of stars

Slides:



Advertisements
Similar presentations
1 Astronomical Observational Techniques and Instrumentation RIT Course Number Professor Don Figer Energy sources of astronomical objects.
Advertisements

Improving mass and age estimates of unresolved stellar clusters Margaret Hanson & Bogdan Popescu Department of Physics.
An upper limit to the masses of stars Donald F. Figer STScI Collaborators: Sungsoo Kim (KHU) Paco Najarro (CSIC) Rolf Kudritzki (UH) Mark Morris (UCLA)
Hypervelocity Stars Ejected from the Galactic Center STScI Colloquium Oct 3, 2007 Warren R. Brown Smithsonian Astrophysical Observatory Collaborators:
Multi-band Infrared Mapping of the Galactic Nuclear Region Q. D. Wang (PI), H. Dong, D. Calzetti (Umass), Cotera (SETI), S. Stolovy, M. Muno, J. Mauerhan,
Stars and the HR Diagram Dr. Matt Penn National Solar Observatory
HIGH-PRECISION PHOTOMETRY OF ECLIPSING BINARY STARS John Southworth + Hans Bruntt + Pierre Maxted + many others.
A Slow X-ray Pulsar in the Young, Massive Star Cluster Westerlund 1 M. MunoJ. S. ClarkP. Crowther S. DoughertyR. De GrijsC. Law S. McMillanM. MorrisI.
Discovery of an Extraordinarily Massive Young Stellar Cluster Donald F. Figer Rochester Institute of Technology/STScI J. MacKenty, M. Robberto, K. Smith.
J.S. Clark 1, I. Negueruela 2, P.A. Crowther 3, S. Goodwin 4 and L. J. Hadfield 3 1 University College London, 2 Universidad de Alicante, 3 University.
The Complex Star Formation History of NGC 1569 L. Angeretti 1, M. Tosi 2, L. Greggio 3, E. Sabbi 1, A. Aloisi 4, C. Leitherer 4 The object The observations.
Isolated BHs. 2 Early works Victorij Shvartsman «Halos around black holes» Soviet Astronomy – Astronom. Zhurn (1971) In this paper accretion onto isolated.
Astronomy 1 – Fall 2014 Lecture 12; November 18, 2014.
X-ray Binaries in Nearby Galaxies Vicky Kalogera Northwestern University Super Star Clusters Starburst galaxies Ultra-Luminous X-Ray Sources Elliptical.
The Low-End MF of the Arches Cluster Sungsoo S. Kim Kyung Hee Univ., Korea with Jihye Shin Don Figer.
Galactic Helium-to-Metals enrichment ratio from the analysis of local main sequence stars observed by HIPPARCOS 52° Congresso SAIt – Teramo 2008 * Università.
Compact object merger rates Richard O’Shaughnessy Vicky Kalogera, Chris Belczynski, Chunglee Kim, Tassos Fragos GWDAW-10 Dec 14, 2005.
Lecture 3 Initial Mass Function and Chemical Evolution Essentials of Nuclear Structure The Liquid Drop Model.
A Neutron Star with a Massive Progenitor in the Star Cluster Westerlund 1 Michael Muno (UCLA/Hubble Fellow) J. S. Clark (Open U)R. de Grijs (U Sheffield)
Lecture 7 Evolution of Massive Stars on the Main Sequence and During Helium Burning - Basics.
Top Five Lessons Learned from the Colliding Antennae Galaxies Brad Whitmore December 1, 2011 Hubble Science Briefing Space Telescope Science Institute.
A Dedicated Search for Transiting Extrasolar Planets using a Doppler Survey and Photometric Follow-up A Proposal for NASA's Research Opportunities in Space.
Multi-Epoch Star Formation? The Curious Case of Cluster Stephen Eikenberry University of Florida 11 April 2007.
Linear spectropolarimetry Jorick Vink (Armagh Observatory)
June 9th 2010Desika Narayanan Penn State - First GQGRBs CO in High-Redshift Galaxies (with applications to the M*-M BH relation) Desika Narayanan Harvard-Smithsonian.
Introduction Star itself Ejecta, Great Eruption in 1840 formed the Homunculus The 5.52 yr periodicity Binary vs shell D = 2.3 kpc.
High mass X-ray binaries and recent star formation in the host galaxy P.Shtykovskiy, M.Gilfanov IKI, Moscow; MPA, Garching.
A Panoramic HST Infrared View of the Galactic Center Q. D. Wang, H. Dong, D. Calzetti (UMass), A. Cotera (SETI), S. Stolovy, M. Muno, J. Mauerhan, (Caltech/IPAC/JPL),
Sami Dib NBI, STARPLAN Unveiling the diversity of the MW stellar clusters + Sacha Hony (ITA/Heidelberg) Stefan Schmeja (ARI/ Heidelberg) Dimitrios Gouliermis.
Methanol maser and 3 mm line studies of EGOs Xi Chen (ShAO) 2009 East Asia VLBI Workshop, March , Seoul Simon Ellingsen (UTAS) Zhi-Qiang Shen.
Star Clusters in the Galactic Center Sgr A* at 30 Workshop Green Bank W.Va March 25, 26, 2004 Donald F. Figer STScI.
Data Reduction with NIRI Knut Olsen and Andrew Stephens Gemini Data Workshop Tucson, AZ July 21, 2010 Knut Olsen and Andrew Stephens Gemini Data Workshop.
Is the Initial Mass Function universal? Morten Andersen, M. R. Meyer, J. Greissl, B. D. Oppenheimer, M. Kenworthy, D. McCarthy Steward Observatory, University.
Field O Stars: A Mode of Sparse Star Formation Joel Lamb Sally Oey University of Michigan.
Probing the Birth of Super Star Clusters Kelsey Johnson University of Virginia Hubble Symposium, 2005.
Intermediate-mass Black Holes in Star Clusters Holger Baumgardt Astrophysical Computing Laboratory, RIKEN, Tokyo new address:
联 合 天 体 物 理 中 心 Joint Center for Astrophysics The half-light radius distribution of LBGs and their stellar mass function Chenggang Shu Joint Center for.
Cornelia C. Lang University of Iowa collaborators:
Milky Way: Galactic Structure and Dynamics Milky Way has spiral structure Galactic Bulge surrounds the Center Powerful radio source Sagittarius A at Center.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
8/18/2010 Claus Leitherer: Young Stellar Populations 1 Young Stellar Populations in the Ultraviolet Claus Leitherer (STScI)
INTRODUCTION Blue straggler stars (BSSs) are brighter, bluer and more massive than stars occupying the MSTO in clusters. There is mounting evidence to.
Towards Realistic Modeling of Massive Star Clusters Oleg Gnedin (University of Michigan) graduate student Hui Li.
Probing the mass accretion process in the neighbourhood of SN1987A
Simulated black hole picture
Modern cosmology 1: The Hubble Constant
Red Supergiants in the Inner Galaxy: an infrared spectroscopic search
Surveys of the Galactic Plane for Massive Young Stellar Objects
On the origin of Microturbulence in hot stars
An Overabundance of X-ray Binaries Near the Galactic Center
Identification of RR Lyrae Stars in the Milky Way Nuclear Star Cluster
Bolocam Galactic Plane Survey Herschel Hi-GAL Plane Survey
Angus Mok Supervisor: Christine Wilson McMaster University
Young planetary systems
Tracing Galactic structure with obscured luminous stars
Pre-Main-Sequence of A stars
IMF inferred based on field stars (red) and based on a variety of clusters (blue, green, and black) (Kroupa 2002)
Mass-loss rate of Redsupergiants in RSGC2 Presenter: Yuanhao Zhang 张渊皞
Paola Rodriguez Hidalgo High Energy Astrophysics
M. Benacquista Montana State University-Billings
Probing the IMF Star Formation in Massive Clusters.
Center for Gravitational Wave Physics Penn State University
International Symposium on Molecular Spectroscopy
Observing Very Young Stars with GPI
Multiplicity among embedded protostars
The X-ray perspective on young stellar populations in objects
Variable Stars.
Galactic Astronomy 銀河物理学特論 I Lecture 3-3: Stellar mass function of galaxies Seminar: Perez-Gonzalez et al. 2008, ApJ, 675, 234 Lecture: 2012/01/16.
Modeling Star Formation and Chemical Evolution in the Local Group dwarfs Oleg Gnedin University of Michigan.
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

An upper limit to the masses of stars Donald F. Figer STScI Collaborators: Sungsoo Kim (KHU) Paco Najarro (CSIC) Rolf Kudritzki (UH) Mark Morris (UCLA) Mike Rich (UCLA) Arches Cluster Illustration

Outline Introduction to the problem Observations Analysis Violators? Conclusions

1. Introduction

An upper mass limit has been elusive There is no accepted upper mass limit for stars. Theory: incomplete understanding of star formation/destruction. accretion may be inhibited by opacity to radiation pressure/winds formation may be aided by collisions of protostellar clumps destruction may be due to pulsational instability Observation: incompleteness in surveying massive stars in the Galaxy. the most massive stars known have M~150 M most known clusters are not massive enough

Radial pulsations and an upper limit 1941, ApJ, 94, 537 Also see Eddington (1927, MNRAS, 87, 539)

Upper mass limit: theoretical predictions Stothers & Simon (1970)

Upper mass limit: theoretical predictions Ledoux (1941) radial pulsation, e- opacity, H 100 M Schwarzchild & Härm (1959) H and He, evolution 65-95 M Stothers & Simon (1970) radial pulsation, e- and atomic 80-120 M Larson & Starrfield (1971) pressure in HII region 50-60 M Cox & Tabor (1976) e- and atomic opacity Los Alamos 80-100 M Klapp et al. (1987) 440 M Stothers (1992) Rogers-Iglesias 120-150 M

Upper mass limit: observation Feitzinger et al. (1980) 250-1000 M Eta Car various 120-150 M R136a1 Massey & Hunter (1998) 136-155 M Pistol Star Figer et al. (1998) 140-180 M Damineli et al. (2000) ~70+? M LBV 1806-20 Eikenberry et al. (2004) 150-1000 M Figer et al. (2004) 130 (binary?) M HDE 269810 Walborn et al. (2004) 150 M WR20a Bonanos et al. (2004) Rauw et al. (2004) 82+83 M

The initial mass function: a tutorial Stars generally form with a frequency that decreases with increasing mass for masses greater than ~1 M: Stars with M>150 M can only be observed in clusters with total stellar mass >104 M. This requirement limits the potential sample of stellar clusters that can constrain the upper mass limit to only a few in the Galaxy.

The initial mass function: observations G=-1.35 G=-1.35 1-120 M Salpeter 1955 Kroupa 2002

2. Observations

Upper mass limit: an observational test Target sample must satisfy many criteria. massive enough to populate massive bins young enough to be pre-supernova phase old enough to be free of natal molecular material close enough to discern individual stars at known distance coeval enough to constitute a single event of a known age Number of "expected" massive stars given by extrapolating observed initial mass function.

Lick 3-m (1995)

Keck 10-m (1998)

HST (1999)

VLT (2003)

Galactic Center Clusters too old (~4 Myr)

3. Analysis

Arches Cluster CMD Figer et al. 1999, ApJ, 525, 750

Luminosity function

Stellar evolution models WNL WNE WCL WCE WO SN Meynet, Maeder et al. 1994, A&AS, 103, 97

NICMOS 1.87 mm image of Arches Cluster No WNE or WC! Figer et al. 2002, ApJ, 581, 258

Arches stars: WN9 stars Figer et al. 2002, ApJ, 581, 258 enhanced Nitrogen HeI NIII HeI HeII NIII NIII HeI/HI Figer et al. 2002, ApJ, 581, 258

Arches stars: O stars HI 68 HeI 27 Figer et al. 2002, ApJ, 581, 258

Arches stars: quantitative spectroscopy NIII NIII NIII Najarro et al. 2004

Age through nitrogen abundances Najarro, Figer, Hillier, & Kudritzki 2004, ApJ, 611, L105

Mass vs. magnitude for t=2 Myr

Initial mass function

Arches Cluster mass function: confirmation HST•NICMOS VLT•NAOS•CONICA Flat Mass Function in the Arches Cluster Stolte et al. 2003

Monte Carlo simulation Simulate 100,000 model clusters, each with 39 stars in four highest mass bins. Repeat for two IMF slopes: G=-1.35 and -0.90. Repeat for IMF cutoffs: 130, 150, 175, 200 M. Assign ages: = tCL± s = (2.0-2.5) ± 0.3 Myr. Apply evolution models to determine apparent magnitudes. Assign extinction: = AK,CL± s = 3.1 ± 0.3. Assign photometric error: s=0.2. Transform "observed" magnitudes into initial masses assuming random cluster age (2.0-2.5 Myr) and AK=3.1. Estimate N(NM>130 M=0).

Simulated effects of errors true initial mass function inferred initial mass function

Results of Monte Carlo simulation

Does R136 have a cutoff? Massey & Hunter (1998) claim no upper mass cutoff. Weidner & Kroupa (2004) claim a cutoff of 150 M. deficit of 10 stars with M>150 M for Mc~50,000 M. deficit of 4 stars with M>150 M for Mc~20,000 M. Oey & Clark (2005) claim a cutoff of 120-200 M. Metallicity in LMC is less than in Arches: ZLMC~Z/3. Upper mass cutoff to IMF is roughly the same over a factor of three in metallicity.

4. Violators?

Figer et al. 1999, ApJ, 525, 759

Is the Pistol Star "too" massive? tracks by Langer Figer et al. 1998, ApJ, 506, 384

Two Violators in the Quintuplet Cluster? Pistol Star and #362 have ~ same mass. Pistol Star Star #362 Figer et al. 1999, ApJ, 525, 759 Geballe et al. 2000, ApJ, 530, 97

LBV 1806-20 Claim 1-7 LPistol* 150-1000 M⊙ Primary uncertainties distance temperature singularity SGR LBV

LBV 1806-20 is a binary? double lines Figer, Najarro, Kudritzki 2004, ApJ, 610, L109

Conclusions The Arches Cluster has an upper mass cutoff to the stellar initial mass function. The upper mass cutoff is ~150 M. The upper mass cutoff may be invariant over a range of a factor of three in metallicity.

The next step: search the Galaxy! Find massive stellar cluster candidates 2MASS Spitzer (GLIMPSE) Target for intensive observation NICMOS/HST (128 orbits proposed) Chandra (50 ks approved, 50 ks proposed) NIRSPEC/Keck (2 half nights appoved) Phoenix/Gemini (30 hours approved) IRMOS/KPNO 4-m (10 nights contingent on HST) EMIR/GTC (10 nights approved) VLA (~100 hours approved)

128 New Galactic Clusters from 2MASS Candidate 2MASS Clusters

Massive Young Clusters in X-rays Arches and Quintuplet Clusters in X-rays Chandra Law & Yusef-Zadeh 2003

Massive Young Clusters in Radio Arches and Quintuplet Clusters in Radio VLA Lang et al. 2001