NPV and Other Investment Criteria

Slides:



Advertisements
Similar presentations
Net Present Value and Other Investment Rules Chapter 5 Copyright © 2010 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Advertisements

McGraw-Hill/Irwin Copyright © 2014 by the McGraw-Hill Companies, Inc. All rights reserved.
McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies,
9-0 Chapter 9: Outline Net Present Value The Payback Rule The Discounted Payback The Average Accounting Return The Internal Rate of Return The Profitability.
Key Concepts and Skills
McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
Chapter McGraw-Hill/Irwin Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. 9 Net Present Value and Other Investment Criteria.
Capital Budgeting: To Invest or Not To Invest  Capital Budgeting Decision –usually involves long-term and high initial cost projects. –Invest if a project’s.
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. 9 Net Present Value and Other Investment Criteria.
Chapter McGraw-Hill Ryerson © 2013 McGraw-Hill Ryerson Limited 9 Prepared by Anne Inglis Net Present Value and Other Investment Criteria.
Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin 0 Chapter 8 Net Present Value and Other Investment Criteria.
T9.1 Chapter Outline Chapter 9 Net Present Value and Other Investment Criteria Chapter Organization 9.1Net Present Value 9.2The Payback Rule 9.3The Average.
McGraw-Hill/Irwin ©2001 The McGraw-Hill Companies All Rights Reserved 8.0 Chapter 8 Net Present Value and Other Investment Criteria.
Copyright  2004 McGraw-Hill Australia Pty Ltd PPTs t/a Fundamentals of Corporate Finance 3e Ross, Thompson, Christensen, Westerfield and Jordan Slides.
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. 9 Net Present Value and Other Investment Criteria.
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Net Present Value and Other Investment Criteria Chapter 8.
McGraw-Hill © 2004 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Net Present Value and Other Investment Criteria Chapter 8.
Net Present Value and Other Investment Criteria
Net Present Value and Other Investment Criteria
0 Net Present Value and Other Investment Criteria.
P.V. VISWANATH FOR A FIRST COURSE IN FINANCE 1. 2 Decision Criteria NPV The Payback Rule Accounting Rate of Return IRR Mutually Exclusive Projects The.
9-1 Net Present Value and Other Investment Criteria Chapter 9 Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Chapter 9 INVESTMENT CRITERIA Pr. Zoubida SAMLAL GF 200.
IRR – Definition and Decision Rule
© 2003 The McGraw-Hill Companies, Inc. All rights reserved. Net Present Value and Other Investment Criteria Chapter Nine.
© 2003 The McGraw-Hill Companies, Inc. All rights reserved. Net Present Value and Other Investment Criteria Lecture 8.
Key Concepts and Skills
Chapter 8 Net Present Value and Other Investment Criteria 0.
© 2003 The McGraw-Hill Companies, Inc. All rights reserved. Net Present Value and Other Investment Criteria Chapter 9.
Chapter 9 Net Present Value and Other Investment Criteria Copyright © 2012 by McGraw-Hill Education. All rights reserved.
Key Concepts and Skills
9-0 Internal Rate of Return 9.4 This is the most important alternative to NPV It is often used in practice and is intuitively appealing It is based entirely.
T9.1 Chapter Outline Chapter 9 Net Present Value and Other Investment Criteria Chapter Organization 9.1Net Present Value 9.2The Payback Rule 9.3The Discounted.
Chapter McGraw-Hill/Irwin Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. 9 Net Present Value and Other Investment Criteria.
NPV and Other Investment Criteria P.V. Viswanath Based partly on slides from Essentials of Corporate Finance Ross, Westerfield and Jordan, 4 th ed.
P.V. VISWANATH FOR A FIRST COURSE IN FINANCE 1. 2 Decision Criteria NPV IRR The Payback Rule EVA Mutually Exclusive Projects The case of multiple IRRs.
Chapter 9 Net Present Value and Other Investment Criteria McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.
Net Present Value and Other Investment Criteria
NPV and Other Investment Criteria
© 2003 The McGraw-Hill Companies, Inc. All rights reserved. Net Present Value and Other Investment Criteria Chapter Nine.
NPV and Other Investment Criteria
Good Decision Criteria
Steve Paulone Facilitator Sources of capital  Two basic sources – stocks (equity – both common and preferred) and debt (loans or bonds)  Capital buys.
Last Week.. Bonds Shares Bond value = PV coupons (annuity) + PV of par
McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
Net Present Value and Other Investment Criteria Chapter 8.
13-1 Agenda for 30 July (Chapter 9) Assessment of various commonly used methods for deciding how capital is to be allocated. Net Present Value (NPV) The.
Basics of Capital Budgeting. An Overview of Capital Budgeting.
Net Present Value and Other Investment Rules
CHAPTER 9 Net Present Value and Other Investment Criteria.
CH 9 NET PRESENT VALUE AND OTHER INVESTMENT CRETERIA.
CHAPTER 9 NET PRESENT VALUE AND OTHER INVESTMENT CRITERIA Copyright © 2016 by McGraw-Hill Global Education LLC. All rights reserved.
Chapter 9 Investment Decision Rules and Capital Budgeting.
Introduction to Valuation: The Time Value of Money Net Present Value Internal Rate of Return.
Net Present Value and Other Investment Criteria Chapter 9.
Net Present Value and Other Investment Criteria Chapter 8.
Net Present Value And Other Investment Criteria
Key Concepts and Skills
Chapter Outline 6.1 Why Use Net Present Value?
16BA608/FINANCIAL MANAGEMENT
Key Concepts and Skills
Net Present Value and Other Investment Rules
Principles of Finance (FIN 200)
TOPIC 4 Net Present Value and Other Investment Criteria
Net Present Value and Other Investment Criteria
Capital Budgeting and the Estimation of Cash Flows
IMPORTANT: In order to view the correct calculator key stroke symbols within this PPT, you will need to follow the font installation directions on this.
Net Present Value and Other Investment Criteria
Review of the Previous Lecture
Presentation transcript:

NPV and Other Investment Criteria P.V. Viswanath For an Introductory Course in Finance

Key Concepts and Skills The NPV Rule Understand the payback rule and its shortcomings Understand accounting rates of return and their problems Understand the internal rate of return and its strengths and weaknesses Understand the net present value rule and why it is the best decision criteria P.V. Viswanath

Chapter Outline Net Present Value The Payback Rule The Average Accounting Return The Internal Rate of Return The Profitability Index The Practice of Capital Budgeting P.V. Viswanath

Sources of Investment Ideas Three categories of projects: New Products Cost Reduction Replacement of Existing assets Sources of Project Ideas: Existing customers R&D Department Competition Employees P.V. Viswanath

Good Decision Criteria We need to ask ourselves the following questions when evaluating decision criteria Does the decision rule adjust for the time value of money? Does the decision rule adjust for risk? Does the decision rule provide information on whether we are creating value for the firm? The Net Present Value rule satisfies these three criteria, and is, therefore, the preferred decision rule. P.V. Viswanath

Net Present Value The difference between the market value of a project and its cost How much value is created from undertaking an investment? The first step is to estimate the expected future cash flows. The second step is to estimate the required return for projects of this risk level. The third step is to find the present value of the cash flows and subtract the initial investment. We learn how to estimate the cash flows in chapter 9. We learn how to estimate the required return in chapter 12. P.V. Viswanath

NPV Decision Rule If the NPV is positive, accept the project A positive NPV means that the project is expected to add value to the firm and will therefore increase the wealth of the owners. Since our goal is to increase owner wealth, NPV is a direct measure of how well this project will meet our goal. NPV is an additive measure: If there are two projects A and B, then NPV(A and B) = NPV(A) + NPV(B). P.V. Viswanath

Project Example Information You are looking at a new project and you have estimated the following cash flows: Year 0: CF = -165,000 Year 1: CF = 63,120; NI = 13,620 Year 2: 70,800; NI = 3,300 Year 3: 91,080; NI = 29,100 Average Book Value = 72,000 Your required return for assets of this risk is 12%. This example will be used for each of the decision rules so that the students can compare the different rules and see that conflicts can arise. This illustrates the importance of recognizing which decision rules provide the best information for making decisions that will increase owner wealth. P.V. Viswanath

Computing NPV for the Project Using the formulas: NPV = 63,120/(1.12) + 70,800/(1.12)2 + 91,080/(1.12)3 – 165,000 = 12,627.42 Do we accept or reject the project? Again, the calculator used for the illustration is the TI- BA-II plus. The basic procedure is the same, you start with the year 0 cash flow and then enter the cash flows in order. F01, F02, etc. are used to set the frequency of a cash flow occurrence. Many of the calculators only require you to use that if the frequency is something other than 1. P.V. Viswanath

Estimating Project Cashflows Before the NPV decision rule can be applied, we need project cashflow forecasts for each year. These are built up from estimates of incremental revenues and associated project costs. Cash Flow = Revenues – Fixed Costs – Variable Costs – Taxes – Long-term Investment Outlays – Changes in Working Capital An equivalent formula is: Cashflow = Net Income + Noncash expenses (that were included in the Net Income computation) +(1-tax rate)Interest – Long-term Investment Outlays – Changes in Working Capital P.V. Viswanath

Cost of Capital The cost of capital is the opportunity cost of capital for the firm’s investors and is used to discount the project cashflows. The cost of capital is also called the WACC and is computed as the firm’s after-tax weighted cost of debt and equity WACC = (E/V)Re + (D/V)Rd(1-t), where E, D are market values of the firm’s equity and debt; V = D+E is the total value of the firm; and t is the firm’s corporate tax rate The cost of debt Rd is multiplied by (1-t) because interest payments on debt are deductible for tax purposes. Since the tax advantage of debt is taken into account in the denominator, we do not include it in the numerator as well, thus avoiding double counting. P.V. Viswanath

Sensitivity Analysis Since the firm will not know the future level of output, or the other cost parameters with certainty, it is important to know how the value of the project changes as these parameters are varied. This is called sensitivity analysis If the final decision on the project is very sensitive to a particular parameter, it would be more valuable to expend resources on obtaining more precise estimates of that parameter. The break-even point is the point of indifference between accepting and rejecting the project. With respect to sales, this is the number of units that have to be sold in order for the project to be in the black. P.V. Viswanath

Issues to keep in mind Sunk costs should be ignored. These costs have already been incurred and cannot be undone whatever the decision that is going to be currently taken. Only incremental cashflows should be considered. Hence if a machine is to be replaced by a new machine, only the additional flows implied by the new machine should be considered to make the decision of whether to buy the new machine. Only cashflows must be considered; allocated expenses, such as depreciation are to be ignored because they reflect capital expenditures already made and are a kind of sunk cost. Of course, if there are any tax implications related to depreciation computations, these must be taken into account. P.V. Viswanath

Projects with Unequal Lives Suppose we have to choose between the following two machines, L and S to replace an existing machine. Machine L costs $1000 and needs to be replaced once every four years, while machine S costs $600 a unit and must be replaced every two years. The flows C1-C4 represent cost savings over the current machine, for the next four years. The discount rate is 10 percent. Project C0 C1 C2 C3 C4 NPV ---------------------------------------------------------------------------- L -1000 500 500 500 500 584.93 S -600 500 500 267.77 P.V. Viswanath

Projects with Unequal Lives Treating this problem as a simple present value problem, we would choose machine L, since the present value of L is greater than that of S. However, choosing S gives us additional flexibility because we are not locked into a four-year cycle. Perhaps better alternatives may be available in year 3. Furthermore, the present comparison is not appropriate because even if no better alternatives are available because we have not considered the tax savings in years 3 and 4 if we go with machine S – we can always buy a second S-type machine at the end of year two! P.V. Viswanath

Projects with Unequal Lives Consider the modified alternatives: Project C0 C1 C2 C3 C4 NPV ------------------------------------------------------------------------------------------- L -1000 500 500 500 500 584.93 S -600 500 500 267.77 Second S -600 500 500 220.66 Combination S -600 500 -100 500 500 488.43 We see that the combination of two S-type machines are not as disadvantageous compared to one L-type machine, though the L-type machine still wins out. P.V. Viswanath

Projects with Unequal Lives Alternatively, we can convert the flows for the machines into equivalent equal annual flows. Thus, we find X, such that the present value of L and L1 are equal. Project C0 C1 C2 C3 C4 NPV ---------------------------------------------------------------------------- L -1000 500 500 500 500 584.93 L1 0 X X X X 584.93 This is obtained as the solution to the equation PV(Annuity of $X for 4 years at 10%) = $584.93 and works out to $184.53 P.V. Viswanath

Projects with Unequal Lives Similarly, we convert the flows for machine S into equivalent equal annual flows. Thus, we find X, such that the present value of S and S1 are equal. Project C0 C1 C2 C3 C4 NPV ---------------------------------------------------------------------------- S -600 500 500 267.77 S1 0 Y Y 267.77 This is obtained as the solution to the equation PV(Annuity of $Y for 2 years at 10%) = $267.77 and works out to $154.29 P.V. Viswanath

Projects with Unequal Lives The values X and Y can simply be compared and the project with the lower equivalent annual flow is chosen. We are effectively making the choice between the following two projects Project C0 C1 C2 C3 C4 ---------------------------------------------------------------------------- L1 0 X X X X S1 0 Y Y Y Y The advantage of this approach is that we don’t need to explicitly construct two projects with the same project lives. P.V. Viswanath

Internal Rate of Return This is the most important alternative to NPV It is often used in practice and is intuitively appealing It is based entirely on the estimated cash flows and is independent of interest rates found elsewhere The IRR rule is very important. Management, and individuals in general, often have a much better feel for percent returns and the value that is created, than they do for dollar increases. A dollar increase doesn’t seem to provide as much information if we don’t know what the initial expenditure was. P.V. Viswanath

IRR – Definition and Decision Rule Definition: IRR is the return that makes the NPV = 0 Decision Rule: Accept the project if the IRR is greater than the required return P.V. Viswanath

Computing IRR For The Project If you do not have a financial calculator, then this becomes a trial and error process In the case of our problem, we can find that the IRR = 16.13%. Note that the IRR of 16.13% > the 12% required return Do we accept or reject the project? Many of the financial calculators will compute the IRR as soon as it is pressed; others require that you press compute. P.V. Viswanath

NPV Profile To understand what the IRR is, let us look at the NPV profile. The NPV profile is the function that shows the NPV of the project for different discount rates. Then, the IRR is simply the discount rate where the NPV profile intersects the X-axis. That is, the discount rate for which the NPV is zero. P.V. Viswanath

NPV Profile For The Project IRR = 16.13% P.V. Viswanath

Decision Criteria Test - IRR Does the IRR rule account for the time value of money? Does the IRR rule account for the risk of the cash flows? Does the IRR rule provide an indication about the increase in value? Should we consider the IRR rule for our primary decision criteria? The answer to all of these questions is yes, although it is not always as obvious. The IRR rule accounts for time value because it is finding the rate of return that equates all of the cash flows on a time value basis. The IRR rule accounts for the risk of the cash flows because you compare it to the required return, which is determined by the risk of the project. The IRR rule provides an indication of value because we will always increase value if we can earn a return greater than our required return. We should consider the IRR rule as our primary decision criteria, but as we will see, it has some problems that the NPV does not have. That is why we end up choosing the NPV as our ultimate decision rule. P.V. Viswanath

Advantages of IRR Knowing a return is intuitively appealing It is a simple way to communicate the value of a project to someone who doesn’t know all the estimation details If the IRR is high enough, you may not need to estimate a required return, which is often a difficult task You should point out, however, that if you get a very large IRR that you should go back and look at your cash flow estimation again. In competitive markets, extremely high IRRs should be rare. P.V. Viswanath

NPV Vs. IRR NPV and IRR will generally give us the same decision Exceptions Non-conventional cash flows – cash flow signs change more than once Mutually exclusive projects Initial investments are substantially different Timing of cash flows is substantially different P.V. Viswanath

IRR and Nonconventional Cash Flows When the cash flows change sign more than once, there is more than one IRR When you solve for IRR you are solving for the root of an equation and when you cross the x-axis more than once, there will be more than one return that solves the equation If you have more than one IRR, which one do you use to make your decision? P.V. Viswanath

Another Example – Nonconventional Cash Flows Suppose an investment will cost $90,000 initially and will generate the following cash flows: Year 1: 132,000 Year 2: 100,000 Year 3: -150,000 The required return is 15%. Should we accept or reject the project? NPV = 132,000 / 1.15 + 100,000 / (1.15)2 – 150,000 / (1.15)3 – 90,000 = 1,769.54 Calculator: CF0 = -90,000; C01 = 132,000; F01 = 1; C02 = 100,000; F02 = 1; C03 = -150,000; F03 = 1; I = 15; CPT NPV = 1769.54 If you compute the IRR on the calculator, you get 10.11% because it is the first one that you come to. So, if you just blindly use the calculator without recognizing the uneven cash flows, NPV would say to accept and IRR would say to reject. P.V. Viswanath

NPV Profile IRR = 10.11% and 42.66% P.V. Viswanath You should accept the project if the required return is between 10.11% and 42.66% P.V. Viswanath

Summary of Decision Rules The NPV is positive at a required return of 15%, so you should Accept If you compute the IRR, you could get an IRR of 10.11% which would tell you to Reject You need to recognize that there are non-conventional cash flows and look at the NPV profile. P.V. Viswanath

IRR and Mutually Exclusive Projects If you choose one, you can’t choose the other Example: You can choose to attend graduate school next year at either Harvard or Stanford, but not both Intuitively you would use the following decision rules: NPV – choose the project with the higher NPV IRR – choose the project with the higher IRR P.V. Viswanath

Example With Mutually Exclusive Projects Period Project A Project B -500 -400 1 325 2 200 IRR 19.43% 22.17% NPV 64.05 60.74 The required return for both projects is 10%. Which project should you accept and why? As long as we do not have limited capital, we should choose project A. Students will often argue that you should choose B because then you can invest the additional $100 in another good project, say C. The point is that if we do not have limited capital, we can invest in A and C and still be better off. If we have limited capital, then we will need to examine what combinations of projects with A provide the highest NPV and what combinations of projects with B provide the highest NPV. You then go with the set that will create the most value. If you have limited capital and a large number of mutually exclusive projects, then you will want to set up a computer program to determine the best combination of projects within the budget constraints. The important point is that we DO NOT use IRR to choose between projects regardless of whether or not we have limited capital. P.V. Viswanath

NPV Profiles IRR for A = 19.43% IRR for B = 22.17% Crossover Point = 11.8% If the required return is less than the crossover point of 11.8%, then you should choose A If the required return is greater than the crossover point of 11.8%, then you should choose B P.V. Viswanath

Conflicts Between NPV and IRR NPV directly measures the increase in value to the firm Whenever there is a conflict between NPV and another decision rule, you should always use NPV IRR is unreliable in the following situations Non-conventional cash flows Mutually exclusive projects P.V. Viswanath

Additional Decision Rules In addition to the NPV and IRR rules, there are some other decision rules that are popularly used. These are conceptually flawed, but have the advantage of being easy to compute and use. They may, therefore, be used if a quick decision is necessary and not a lot is riding on the decision. Two examples of these alternative decision rules are the payback rule and the accounting rate of return. P.V. Viswanath

Payback Period How long does it take to get the initial cost back in a nominal sense? Computation Estimate the cash flows Subtract the future cash flows from the initial cost until the initial investment has been recovered Decision Rule – Accept if the payback period is less than some preset limit P.V. Viswanath

Computing Payback For The Project Assume we will accept the project if it pays back within two years. Year 1: 165,000 – 63,120 = 101,880 still to recover Year 2: 101,880 – 70,800 = 31,080 still to recover Year 3: 31,080 – 91,080 = -60,000 project pays back in year 3 Do we accept or reject the project? The payback period is year 3 if you assume that the cash flows occur at the end of the year as we do with all of the other decision rules. If we assume that the cash flows occur evenly throughout the year, then the project pays back in 2.34 years. P.V. Viswanath

Decision Criteria Test - Payback Does the payback rule account for the time value of money? Does the payback rule account for the risk of the cash flows? Does the payback rule provide an indication about the increase in value? Should we consider the payback rule for our primary decision criteria? The answer to all of these questions is no. P.V. Viswanath

Advantages and Disadvantages of Payback Ignores the time value of money Requires an arbitrary cutoff point Ignores cash flows beyond the cutoff date Biased against long-term projects, such as research and development, and new projects Advantages Easy to understand Adjusts for uncertainty of later cash flows Biased towards liquidity P.V. Viswanath

Justifying the Payback Period Rule We usually assume that the same discount rate is applied to all cash flows. Let di be the discount factor for a cash flow at time i, implied by a constant discount rate, r, where . Then di+1/di = 1+r, a constant. However, if the riskiness of successive cash flows is greater, then the ratio of discount factors would take into account the passage of time as well as this increased riskiness. In such a case, the discount factor may drop off to zero more quickly than if the discount rate were constant. Given the simplicity of the payback method, it may be appropriate in such a situation. P.V. Viswanath

Justifying the Payback Period Rule P.V. Viswanath

Average Accounting Return There are many different definitions for average accounting return The one used in the book is: Average net income / average book value Note that the average book value depends on how the asset is depreciated. Need to have a target cutoff rate Decision Rule: Accept the project if the AAR is greater than a preset rate. The example in the book uses straight line depreciation to a zero salvage; that is why you can take the initial investment and divide by 2. If you use MACRS, you need to compute the BV in each period and take the average in the standard way. P.V. Viswanath

Computing AAR For The Project Assume we require an average accounting return of 25% Average Net Income: (13,620 + 3,300 + 29,100) / 3 = 15,340 AAR = 15,340 / 72,000 = .213 = 21.3% Do we accept or reject the project? Students may ask where you came up with the 25%, point out that this is one of the drawbacks of this rule. There is no good theory for determining what the return should be. We generally just use some rule of thumb. P.V. Viswanath

Decision Criteria Test - AAR Does the AAR rule account for the time value of money? Does the AAR rule account for the risk of the cash flows? Does the AAR rule provide an indication about the increase in value? Should we consider the AAR rule for our primary decision criteria? The answer to all of these questions is no. In fact, this rule is even worse than the payback rule in that it doesn’t even use cash flows for the analysis. It uses net income and book value. P.V. Viswanath

Advantages and Disadvantages of AAR Easy to calculate Needed information will usually be available Disadvantages Not a true rate of return; time value of money is ignored Uses an arbitrary benchmark cutoff rate Based on accounting net income and book values, not cash flows and market values P.V. Viswanath

Summary of Decisions For The Project Net Present Value Accept Payback Period Reject Average Accounting Return Internal Rate of Return So what should we do – we have two rules that indicate to accept and two that indicate to reject. P.V. Viswanath

Profitability Index Measures the benefit per unit cost, based on the time value of money A profitability index of 1.1 implies that for every $1 of investment, we create an additional $0.10 in value This measure can be very useful in situations where we have limited capital P.V. Viswanath

Advantages and Disadvantages of Profitability Index Closely related to NPV, generally leading to identical decisions Easy to understand and communicate May be useful when available investment funds are limited Disadvantages May lead to incorrect decisions in comparisons of mutually exclusive investments P.V. Viswanath

Capital Budgeting In Practice We should consider several investment criteria when making decisions NPV and IRR are the most commonly used primary investment criteria Payback is a commonly used secondary investment criteria Even though payback and AAR should not be used to make the final decision, we should consider the project very carefully if they suggest rejection. There may be more risk than we have considered or we may want to pay additional attention to our cash flow estimations. Sensitivity and scenario analysis can be used to help us evaluate our cash flows. The fact that payback is commonly used as a secondary criteria may be because short paybacks allow firms to have funds sooner to invest in other projects without going to the capital markets P.V. Viswanath

Quick Quiz Consider an investment that costs $100,000 and has a cash inflow of $25,000 every year for 5 years. The required return is 9% and required payback is 4 years. What is the payback period? What is the NPV? What is the IRR? Should we accept the project? What decision rule should be the primary decision method? When is the IRR rule unreliable? Payback period = 4 years NPV = -2758.72 IRR = 7.93% P.V. Viswanath