Towards a more perfect wind braking model

Slides:



Advertisements
Similar presentations
1 Degenerate stars There is not a sharp transition between relativistically degenerate and non- relativistically degenerate gas. Similarly there is no.
Advertisements

X-ray pulsars in wind-fed accretion systems 王 伟 (NAOC) July 2009, Pulsar Summer School Beijing.
Pulsar High Energy Emission Models: What Works and What Doesn't “Standard” outer magnetosphere models - successes Shortcomings of the models Next steps?
Compact remnant mass function: dependence on the explosion mechanism and metallicity Reporter: Chen Wang 06/03/2014 Fryer et al. 2012, ApJ, 749, 91.
Wind braking of magnetars H. Tong ( 仝号 ) Xinjiang Astronomical Observatory, Chinese Academy of Sciences Collaborators: J.P. Yuan (XAO), R.X. Xu (PKU),
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Study on polarization of high- energy photons from the Crab pulsar 〇 J. Takata (TIARA-NTHU/ASIAA,Taiwan) H.-K. Chang (NTH Univ., Taiwan) K.S. Cheng (HK.
Pulsars Basic Properties. Supernova Explosion => Neutron Stars part of angular momentum carried away by shell field lines frozen into solar plasma (surface.
Neutron Stars and Black Holes
Neutron Stars Chandrasekhar limit on white dwarf mass Supernova explosions –Formation of elements (R, S process) –Neutron stars –Pulsars Formation of X-Ray.
Matthew Kerr Stanford University / KIPAC.
Neutron Stars 2: Phenomenology Andreas Reisenegger Depto. de Astronomía y Astrofísica Pontificia Universidad Católica de Chile Chandra x-ray images of.
A Periodically Active Pulsar Giving Insight into Magnetospheric Physics Lun-Wen Yeh Science vol 312, 28 April 2006 M. Kramer, A.G. Lyne, J.T.
Neutron Stars and Black Holes PHYS390: Astrophysics Professor Lee Carkner Lecture 18.
Cohesive Properties of Highly Magnetized Neutron Star Surfaces Zach Medin July 19, 2006.
Neutron Stars. Discovery of neutron (1932) Neutron Star (1934) –Landau (unpublished) –Baade & Zwicky “With all reserve we advance the view that supernovae.
Gamma-ray emission mechanism in pulsar magnetosphere – electrodynamics and models 徐佩君 清大天文所.
Neutron Stars 2: Phenomenology Andreas Reisenegger ESO Visiting Scientist Associate Professor, Pontificia Universidad Católica de Chile Chandra x-ray.
Neutron Stars and Black Holes Chapter 14. Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun ) collapse beyond.
Simulation of the Recycled Pulsar Evolution Pan Yuanyue, Wang Na and Zhang Chengmin, Xinjiang Astronomical Observatory, CAS, Urumqi, China National Astronomical.
He star evolutionary channel to intermediate-mass binary pulsars with a short-orbital-period Chen Wen-Cong School of Physics, Peking University Department.
张力 张力 2003 年 10 月 21 日于北京 2003 年 10 月 21 日于北京 Gamma-ray Luminosity and Death Lines of Pulsars with Outer Gaps.
Qiao,G.J. Dept. of Astronomy, Peking Univ. Collaborators: Zhang, B.( University of Nevada ), Xu, R.X.(PKU), Han,J.L.(NAOC), Lin,W.P.(SHO),Lee,K.J.(PKU)
Death of large stars Chapter 21&22 Supernova Ia Death of high mass stars: Neutron stars Pulsars Black holes.
The population of pulsars with interpulses and the implications for beam evolution (astro-ph/ ) Patrick Weltevrede & Simon Johnston Low-Frequency.
Ferromagnetism in nuclear matter (and how it relates to neutron stars) Jacobus Diener (PhD student) Supervisors: Prof FG Scholtz and Prof HB Geyer Department.
ASTR 567: Observational Techniques in Astronomy. ASTR 567: Grading Scheme Start of lecture quizzes………………….. 10% Homeworks……………………………………..25% Highest of.
“GRAND UNIFICATION” in Neutron Stars Victoria Kaspi McGill University Montreal, Canada.
Introduction A pulsar magnetosphere can be divided into two zones: The closed zone filled with a dense plasma co-rotating with the neutron star (NS), and.
1 X-ray enhancement and long- term evolution of Swift J arXiv: Authors: O. Benli, S. Caliskan, U. Ertan et al. Reporter: Fu, Lei.
Magnetic Field Decay and Core Temperature of Magnetars, Normal and MS pulsars Shuang-Nan Zhang 张双南 1 Yi Xie 谢祎 2 1. Institute of High Energy Physics 2.
A Non-Radial Oscillation Model for Radio Pulsars In collaboration with Dr. J. Christopher Clemens University of North Carolina at Chapel Hill.
After the Supernova: Pulsars Melissa Anholm University of Wisconsin-Milwaukee 29 September, 2008.
GRB efficiency Revisited & Magnetar behind short GRB
Name EPOCH (Hz) (10 –12 s –2 ) Data Range (MJD) J (4)– (1)55666 – (7)– (5)55912.
Pulsar Radio Emission Height: PSR B Zhang Hui National Astronomical Observatories, Chinese Academic of Science Sino-German Bilateral Workshop on.
Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, KF, Kotera, Olinto 2012, ApJ,
Death of Stars II Physics 113 Goderya Chapter(s): 14
Low frequency observation of both pulsar wind and magnetodipole radiation from switch on-off pulsars Ya.N. Istomin P.N. Lebedev Physical Institute, Moscow,
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
The Radio Evolution of the Galactic Center Magnetar Joseph Gelfand (NYUAD / CCPP) Scott Ransom (NRAO), Chryssa Kouveliotou (GWU), Mallory S.E. Roberts.
Cosmological Heavy Ion Collisions: Colliding Neutron Stars and Black Holes Chang-Hwan Lee
Multiband observation and theory of magnetars H. Tong ( 仝号 ) Xinjiang Astronomical Observatory, CAS For 2013 Pulsar summer
Gamma-Ray Emission from Pulsars
Formation of Redback and Black Widow Binary Millisecond Pulsars
Anti-glitch induced by collision of a solid body with the magnetar 1E Y. F. Huang Collaborator: J. J. Geng Nanjing University.
Radiation Recoil Velocity of a Neutron Star Y. Kojima Hiroshima Univ. JGRG20 at Kyoto Sept in 2010 The 20 th Anniversary of JGRG & The 60 th Birthday.
When a star dies…. Introduction What are compact objects? –White dwarf, neutron stars & black holes Why study? –Because it’s fun! –Test of physics in.
Observational constraints on theories of pulsations Can we expect to learn something fundamental about neutron stars from their variable radio emission?
FAST and the neutron star zoo Patrick Weltevrede Jodrell Bank Centre of Astrophysics University of Manchester.
Collaborators Peking University Guojun Qiao, Renxin Xu, Jiguang Lu, Kejia Lee Qian Xuesen Laboratory of Space Technology Yuanjie Du China West Normal University.
A Fan Beam Model for Radio Pulsars Hongguang Wang (王洪光) Center for Astrophysics, Guangzhou University 广州大学天体物理中心 Fast Pulsar Symposium 4.
1 Death of a Large Mass Star
Part-time pulsarS on behalf of PALFA Collaboration
Pulsars: the Magnetosphere and the γ-ray emission
Predicting the BRAING INDEX OF INTERMITTENT AND NULLING PULSARS
Core Collapse Supernovae and Neutron Star Kicks
Observation of Pulsars and Plerions with MAGIC
Basic Properties By Dr. Lohse, University of Berlin
Magnetars: wind braking
Magnetars..
Speaker:Yi Xie Lunch Talk
Evolution with decaying magnetic field
Timing noise in pulsars
Final states of a star: 1. White Dwarf
On the formation of the peculiar LMXB IGR J in Terzan 5
Note topic for chapter 17 what is the source of the sun’s energy
Two types of glitches in a solid quark star model
Transient emission associated with the birth of neutron stars
Pulse Nulling and Subpulse Drifting Properties in Pulsars
Presentation transcript:

Towards a more perfect wind braking model F. F. Kou (寇菲菲) Supervisor: H. Tong (仝号) Cooperator:Z. W. Ou (区子维) Xinjiang Astronomical observatory, CAS 2015.07.05

Outline Outline Introduction The pulsar wind model Developments and applications Particle density Braking index evolution Long-term evolution of the pulsar when considering pulsar death Variable timing behavior in the pulsar wind model Discussions and conclusions References

Introduction

Traditional magneto-dipole radiation (magnetic dipole rotating in vacuum): (Shapiro & Teukolsky 1983) Braking index expected in this model is 3.

Pulsar wind model (Xu & Qiao 2001)  

Braking index in the wind braking model: Xu & Qiao 2001 Potential drop of the acceleration gap The maximum potential drop for a rotating dipole.

The wind braking magnetar (Tong et al. 2013).   The wind braking magnetar (Tong et al. 2013). Wind braking intermittent pulsar (Li et al. 2014). ……………

Development and application The accelerated primary particle density should be larger than the Goldreich-Julian particle density. Braking index evolution in the pulsar wind model Long-term evolution of pulsars when considering pulsar death. Variable particle density result in the variable timing behavior

1.Particle density   For the Crab pulsar, particle density should be 100~10^4 times Goldreich-Julian charge density

2.Braking index evolution in the wind braking model Braking index evolves from 3 to 1 (6/7) magneto-dipole radiation to particle wind

3.Long-term evolution of pulsars (pulsar death) why is the pulsar death essential ? A pulsar death when (Ruderman & Sutherland 1975)

The effect of pulsar death Contopoulos & Spitkovsky 2006

Crab evolution in the VGCR model

4.Variable timing behaviors in the pulsar wind model 36% increase in the spin-down rate

Braking index of the Crab pulsar

a. Different particle density result in variable spin down rate  

b. A changing particle density will result in variable timing behavior For the Crab pulsar: n=2.3< 2.51   For PSR J1846-0258: n=2.19< 2.65  

Discussions  

Conclusions In the pulsar wind model, the pulsar is braked to spin down by the combined effect of magnetic field and particle density. Braking index expected is between 1 (model dependent) and 3. Considering pulsar death, pulsars will not evolve towards the cluster of magnetars but downwards the death valley. Different particle density result in variable spin down rate. An increasing particle density results in a lower braking index. The pulsar wind model can be applied to other pulsars or magnetars. ……

References Contopoulos I., Spitkovsky A., 2006, ApJ, 643, 1139. Dib R., Kaspi V. M., 2014, ApJ, 784, 37 Espinoza C. M., Lyne A. G., Kramer M., et al., 2011, ApJ, 741, L13 Goldreich, P., Julian, W. H. 1969, ApJ, 157, 869 Hobbs G., Lyne A. G., Kramer M., 2010, MNRAS, 402, 1027 Kaspi V. M., Gavriil F. P., Woods P. M., 2003, ApJ, 588, L93 Li, L., Tong, H., Yan, W. M., Yuan, J. P., Xu, R. X. & Wang, N. 2014, ApJ, 788, L16. Livingstone M. A., Kaspi V. M., Gavriil F. P., Manchester R. N., Gotthelf E. V. G., Kuiper L., 2007, Astrophys. Space Sci., 308, 317 Livingstone M. A., Kaspi V. M., Gotthelf E. V., 2010, ApJ, 710, 1710 Lyne A. G., Jordan C. A., Smith F.G., et al., 2015, MNRAS, 446, 857

Marshall F. E. , Guillemot L. , Harding A. K. , Martin P. , Smith D. A Marshall F. E., Guillemot L., Harding A. K., Martin P., Smith D. A., 2015, arXiv:1506.05765 Ruderman M. A., Sutherland P. G., 1975, ApJ, 196, 51 Shapiro S. L., Teukolsky S. A., 1983, Black holes, white dwarfs, and neutron stars, John Wiley & Sons, New York Tong H., Xu R. X., Song L. M., et al., 2013, ApJ, 768, 144 Tong, H., Wang, W., 2014, arXiv:1406.6458 Wang J., Wang N., Tong H., et al., 2012, Astrophys.Space Sci., 340, 307 Weltevrede P., Johnston S., Espinoza C. M., 2011, MNRAS, 411, 1917 Xu R. X., Qiao G. J., 2001, ApJ, 561, L85 Yue, Y. L., Xu, R. X. & Zhu, W. W. 2007, Advance in Space Research, 40, 1491

Thanks!!!