CH-4: Imperfections in Solids

Slides:



Advertisements
Similar presentations
CH-4: Imperfections in Solids
Advertisements

Chapter 5 Defects in solids
Chapter 5: Imperfections in Solids
Chapter 5. Imperfections in Solids 5-1 Introduction For a crystalline solid we have assumed that perfect order exists throughout the material on an atomic.
Chapter 7 Ionic and Metallic Bonding
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Introduction To Materials Science, Chapter 4, Imperfections in solids University of Virginia, Dept. of Materials Science and Engineering 1 “Crystals are.
1. Chapter 4: Imperfections in Solids 2 Introduction Metals Alloys Solid solutions New/second phase Solute (guest) Solvent (host)
CHAPTER 4: IMPERFECTIONS IN SOLIDS
IMPERFECTIONS IN SOLIDS Week Solidification - result of casting of molten material –2 steps Nuclei form Nuclei grow to form crystals – grain structure.
CH-4: Imperfections in Solids So far we have seen perfect crystals: X-ray diffraction and Bragg’s law Imperfections or defects are covered in ch-4. Defects.
Crystalline Arrangement of atoms. Chapter 4 IMPERFECTIONS IN SOLIDS The atomic arrangements in a crystalline lattice is almost always not perfect. The.
PY3090 Preparation of Materials Lecture 3 Colm Stephens School of Physics.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 5: Defects in Solids Perfect crystals don’t exist. Many of the important properties of materials are strongly influenced by defects, or even entirely.
Thermally Activated Processes and Diffusion in Solids
Defects & Impurities BW, Ch. 5 & YC, Ch 4 + my notes & research papers
Example 4.1 The Effect of Temperature on Vacancy Concentrations
Chapter 5 - Imperfections in Solids
Crystallographic Planes
Chapter 4- ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 4- ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic sites. POINT DEFECTS CHAPTER 4: IMPERFECTIONS.
IMPERFECTIONS IN SOLIDS
STRUCTURAL IMPERFECTIONS (DEFECTS) IN CRYSTALLINE SOLIDS
CHAPTER 3: INELASTIC DEFORMATION. 6 Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic.
The Muppet’s Guide to: The Structure and Dynamics of Solids 7. Defects and Solutions.
The Structure and Dynamics of Solids
김 석 범 MSM Lab. ( Graduate Student ) 디자인과 재료 문제풀 이.
§2.4 Crystal Structure and Complex Lattice
A (0001) plane for an HCP unit cell is show below.
Imperfections in Solids
Phase Diagrams Chapter 9 4 th Edition Chapter 10 5 th Edition.
Materials Science Chapter 4 Disorder in solid Phases.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Material science & Metallurgy L D College of Engineering Mechanical Engineering 1.
Nonferrous Metals & Alloys. Nonferrous Metals Ferrous Alloys – alloys contain iron Nonferrous Metals – metals do not contain iron such as Copper (Cu),
Chapter 6: Imperfections in Solids
Solid Solutions Sometimes impurities are desirable, example, sterling silver, 7.5% Cu and 92.5% Ag. The copper makes silver stronger and harder.
Topic Name : Solid solution
Chapter 5: Imperfections in Solids
Materials Engineering
Chpt 5: Imperfections in Solids
Imperfections in the Atomic and Ionic Arrangements
Metals & Alloys.
SE Catalytic converter is a classic example of green technology
Solid Solutions and Phase Equilibrium
Dislocations and Strengthening
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Point Defects in Crystalline Solids
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Chapter 3:week 8 Solid State Chemistry Imperfections in Solid Materials Band theory, insulators, semi conductors p-type and n-type semiconductors and.
6.2 Reaction Rates.
Chapter 5: Diffusion in Solids
Ch 5 Ions and Ionic Compounds
Imperfections in Solid Materials
Chapter 6: Imperfections in Solids
Chapter Outline Defects in Solids
Rate Process and Diffusion
Chapter 7 Ionic and Metallic Bonding
IMPERFECTIONS IN SOLIDS
CHAPTER 4: IMPERFECTIONS IN SOLIDS
TOPIC 2: Diffusion in Solids
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Rate Process and Diffusion
PDT 153 Materials Structure And Properties
Imperfections in Solids
Diffusion Chapter 5 9/4/2019 9:52 AM9/4/2019 9:52 AM
Electrons and Ions Valence electrons Core electrons
Presentation transcript:

CH-4: Imperfections in Solids So far we have seen perfect crystals: X-ray diffraction and Bragg’s law Imperfections or defects are covered in ch-4. Defects in crystals make them interesting 2 major types of defects: Chemical – Impurities or Alloying elements Atomic arrangement- Structure Real materials are not perfect Good Chemical Imperfections: dopants & alloying element Atomic arrangements: missing atom, extra atom, differently oriented unit cells, etc…

Why STUDY Imperfections in Solids? Many of the important properties of materials are due to the presence of imperfections. Pure metals experience significant alterations when alloyed: Sterling silver: 92.5% Ag & 7.5% Cu. Cartridge brass: 70% Cu & 30% Zn. Impurities play important roles in semiconductors. Steel (composition ) and (making) Atomic defects are responsible for reducing gas pollutant emissions in automobiles: Molecules of pollutant gases become attached to surface defects of crystalline metallic materials ((Ce0.5Zr0.5)O2) in the catalytic converter. While attached to these sites, chemical reactions convert them into other non- or less-polluting substances.

Catalyst: (Ce0.5Zr0.5)O2 Catalyst is a substance that speeds up the rate of a chemical reaction without participating in the reaction itself. Catalyst adsorbs on its surface gas pollutants (CO and NOX) and molecules of unburned hydrocarbons, which are converted to CO2 and H2O. Active sites on catalysts are normally surface defects Schematic representation of surface defects that are potential adsorption sites for catalysts. High-resolution transmission electron micrograph of single crystal (Ce0.5Zr0.5)O2,which is used in Catalytic Converters.

http://auto.howstuffworks.com/catalytic-converter2.htm In the catalytic converter, there are two different types of catalyst at work, a reduction catalyst and an oxidation catalyst. Both types consist of a ceramic structure coated with a metal catalyst, usually platinum, rhodium and/or palladium. The idea is to create a structure that exposes the maximum surface area of catalyst to the exhaust stream, while also minimizing the amount of catalyst required, as the materials are extremely expensive. The catalyst used in a catalytic converter is a combination of platinum (Pt), palladium (Pd), and rhodium (Rh). These metals coat a ceramic honeycomb (or ceramic beads) contained within a metal casing that is attached to the exhaust pipe. The catalytic converter’s honeycomb structure provides the maximum surface area on which reactions can take place while using the least amount of catalyst. - See more at: http://www.explorecuriocity.org/Content.aspx?contentid=1779#sthash.ygSRJfFB.dpuf

Types of Imperfections • Vacancy atoms • Interstitial atoms • Substitutional atoms Point defects • Dislocations Line defects • Grain Boundaries Area defects

Point Defects in Metals • Vacancies: -vacant atomic sites in a structure. Vacancy distortion of planes • Self-Interstitials: -"extra" atoms positioned between atomic sites. self- interstitial distortion of planes

Equilibrium Concentration: Point Defects • Equilibrium concentration varies with temperature! No. of defects Activation energy N æ  Q ö v v = exp ç  No. of potential N è k T ø defect sites Temperature Boltzmann's constant -23 (1.38 x 10 J/atom-K) -5 (8.62 x 10 eV/atom-K) Each lattice site is a potential vacancy site

Measuring Activation Energy æ ç N v = exp - Q k T è ö ø  • We can get Qv from an experiment. • Measure this... N v T exponential dependence! defect concentration • Replot it... 1/ T N v ln - Q /k slope

Estimating Vacancy Concentration • Find the equil. # of vacancies in 1 m3 of Cu at 1000C. • Given: r = 8.4 g / cm 3 A = 63.5 g/mol Cu Q = 0.9 eV/atom N = 6.02 x 1023 atoms/mol v A = 2.7 x 10-4 8.62 x 10-5 eV/atom-K 0.9 eV/atom 1273 K ç N v = exp - Q k T æ è ö ø  For 1 m3 , N = N A Cu r x 1 m3 = 8.0 x 1028 sites • Answer: N v = (2.7 x 10-4)(8.0 x 1028) sites = 2.2 x 1025 vacancies

4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327°C (600 K). Assume an energy for vacancy formation of 0.55 eV/atom.   4.3 Calculate the activation energy for vacancy formation in aluminum, given that the equilibrium number of vacancies at 500C (773 K) is 7.57  1023 m-3. The atomic weight and density (at 500C) for aluminum are, respectively, 26.98 g/mol and 2.62 g/cm3.

Impurities in Solids A pure metal consisting of only one type of atom just isn’t possible. Even with sophisticated techniques, it is difficult to refine metals to a purity in excess of 99.9999%. Very few metals are used in the pure or nearly pure state: 1. Electronic wires- 99.99% purity Cu; Very high electrical conductivity. 2. 99.99% purity Al (super-pure Al) is used for decorative purposes-- Very bright metallic surface finish. Most engineering metals are combined with other metals or nonmetals to provide increased strength, higher corrosion resistance, etc. Cartridge brass: 70% Cu & 30% Zn. Sterling silver: 92.5% Ag & 7.5% Cu. Inconel 718, Ni-base super-alloy, used for jet engine parts, has 10 elements.

Solid Solutions Simplest type of alloy is that of solid solution.   Two types: 1. Substitution Solid Solution 2. Interstitial Solid Solution.

Conditions for Solid Solubility Conditions for substitutional solid solution (S.S.) W. Hume – Rothery rule 1. r (atomic radius) < 15% 2. Proximity in periodic table i.e., similar electronegativities 3. Same crystal structure for pure metals 4. Same Valency An example of a substitutional solid solution is found for copper and nickel. These two elements are completely soluble in one another at all proportions. The atomic radii for copper and nickel are 0.128 and 0.125 nm, respectively; both have the FCC crystal structure; their electronegativities are 1.9 and 1.8 and their valences match.

Application of Hume–Rothery rules – Solid Solutions Element Atomic Crystal Electro- Valence Radius Structure nega- (nm) tivity Cu 0.1278 FCC 1.9 +2 C 0.071 H 0.046 O 0.060 Ag 0.1445 FCC 1.9 +1 Al 0.1431 FCC 1.5 +3 Co 0.1253 HCP 1.8 +2 Cr 0.1249 BCC 1.6 +3 Fe 0.1241 BCC 1.8 +2 Ni 0.1246 FCC 1.8 +2 Pd 0.1376 FCC 2.2 +2 Zn 0.1332 HCP 1.6 +2 Pt 0.1387 FCC 2.2 +2 4.4: Which of these elements would you expect to form the following with copper: (a) A substitutional solid solution having complete solubility (b) A substitutional solid solution of incomplete solubility (c) An interstitial solid solution

Interstitial Solid Solutions

Computation of Radius of BCC Octahedral Interstitial Site Compute the radius r of an impurity atom that just fits into a BCC octahedral site in terms of the atomic radius R of the host atom (without introducing lattice strains).

Computation of Radius of FCC Octahedral Interstitial Site Compute the radius r of an impurity atom that just fits into a FCC octahedral site in terms of the atomic radius R of the host atom (without introducing lattice strains).

Computation of Radius of BCC Tetrahedral Interstitial Site Compute the radius r of an impurity atom that just fits into a BCC tetrahedral interstitial site in terms of the atomic radius R of the host atom (without introducing lattice strains).