Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Slides:



Advertisements
Similar presentations
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Phenomenology of new neutral.
Advertisements

Dark Matter Annihilation in the Milky Way Halo Shunsaku Horiuchi (Tokyo) Hasan Yuksel (Ohio State) John Beacom (Ohio State) Shin’ichiro Ando (Caltech)
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
The positron excess and supersymmetric dark matter Joakim Edsjö Stockholm University
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine Arlington LC Workshop January 2003.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine American Linear Collider Physics Group Seminar 20 February 2003.
Enhancement of Line Gamma Ray Signature from Bino-like Dark Matter Annihilation due to CP Violation Yoshio Sato (Saitama University/Technical University.
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
Paris 22/4 UED Albert De Roeck (CERN) 1 Identifying Universal Extra Dimensions at CLIC  Minimal UED model  CLIC experimentation  UED signals & Measurements.
Significant enhancement of Bino-like dark matter annihilation cross section due to CP violation Yoshio Sato (Saitama University) Collaborated with Shigeki.
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
The Dark Side of the Universe What is dark matter? Who cares?
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Aspen 4/28/05Physics at the End of the Galactic Cosmic Ray Spectrum - “Below the Knee” Working Group “Below the Knee” Working Group Report - Day 3 Binns,
Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 1 Report from Italy A. Morselli, A. Lionetto, A. Cesarini, F.Fucito, P.Ullio* INFN,
Andrei Kounine / MIT on behalf of AMS-02 collaboration ICHEP 2004, Beijing Astroparticle physics with AMS-02.
The Universe  What do we know about it  age: 14.6 billion years  Evolved from Big Bang  chemical composition  Structures.
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
Lake Louise - February Detection & Measurement of gamma rays in the AMS-02 Detector J. Bolmont - LPTA - IN2P3/CNRS Montpellier - France.
Summary of indirect detection of neutralino dark matter Joakim Edsjö Stockholm University
A Lightning Review of Dark Matter R.L. Cooper
Analysis methods for Milky Way dark matter halo detection Aaron Sander 1, Larry Wai 2, Brian Winer 1, Richard Hughes 1, and Igor Moskalenko 2 1 Department.
Theoretical Issues in Astro Particle Physics J.W. van Holten April 26, 2004.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
22 December 2006Masters Defense Texas A&M University1 Adam Aurisano In Collaboration with Richard Arnowitt, Bhaskar Dutta, Teruki Kamon, Nikolay Kolev*,
Indirect Detection Of Dark Matter
The Search For Supersymmetry Liam Malone and Matthew French.
Standard Model - Standard Model prediction (postulated that neutrinos are massless, consistent with observation that individual lepton flavors seemed to.
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Z’production at LHC in an extended.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
J. KalinowskiDark matter in U(1) extended SUSY1 Dark matter in the U(1) extended supersymmetric model Jan Kalinowski S.Y. Choi, H.E. Haber and P.M. Zerwas,
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
Fermi Gamma-ray Space Telescope Searches for Dark Matter Signals Workshop for Science Writers Introduction S. Ritz UCSC Physics Dept. and SCIPP On behalf.
DARK MATTER Fisica delle Astroparticelle Piergiorgio Picozza a.a
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
Jieun Kim ( CMS Collaboration ) APCTP 2012 LHC Physics Workshop at Korea (Aug. 7-9, 2012) 1.
Topics on Dark Matter Annihilation
Indirect dark matter search with the balloon-borne PEBS detector
The Dark Universe Susan Cartwright.
An interesting candidate?
INFN & University of Roma “Tor Vergata”
Dark Matter in the Universe physics beyond the standard model
Comparison of GAMMA-400 and Fermi-LAT telescopes
Imaging Dark Matter with the Pamela Experiment
Germán Gómez Vargas Universidad Autónoma de Madrid
Dark Matter in Galactic Gamma Rays
Fermi LAT Limits on High-Energy Gamma Lines from WIMP Annihilation
Physics Overview Yasuhiro Okada (KEK)
John Kelley IceCube Journal Club 27 February 2008
XX ECRS ,Lisbon, 5th September, 2006
Section VI - Weak Interactions
Neutral and charged Higgsino as carriers of residual SUSY effects.
Primordial BHs.
Indirect detection of dark matter
The symmetry of interactions
mSUGRA SUSY Searches at the LHC
Physics Overview Yasuhiro Okada (KEK)
DARK PHOTONS FROM THE SUN
Physics Overview Yasuhiro Okada (KEK)
SUSY SEARCHES WITH ATLAS
Can new Higgs boson be Dark Matter Candidate in the Economical Model
Presentation transcript:

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Search for exotic process with space experiments Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Rencontres de Moriond, Very High Energy Phenomena in the Universe Les Arc, 20-27 January 2001 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata GLAST 14 layers of 2.5% X0 converter (Pb)+4 layers of 2.5% X0 18 layers of X Y silicon strips Exploded view: One of the 16 towers Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Elements of a pair-conversion telescope • photons materialize into matter-antimatter pairs: Eg --> me+c2 + me-c2 • electron and positron carry information about the direction, energy and polarization of the g-ray (energy measurement) Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata GLAST Performance Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata One year All-Sky Survey Simulation, Eg > 100 MeV All-sky intensity map based on five years EGRET data. All-sky intensity map from a GLAST one year survey, based on the extrapolation of the number of sources versus sensitivity of EGRET Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Uncover the nature of Dark Matter Probing the era of Galaxy Formation Uncover the nature of Dark Matter Roll- offs in the g -ray spectra from AGN at large z probe the extra-galactic background light (EBL) over cosmological distances. A dominant factor in EBL models is the era of galaxy formation: AGN roll- offs may help distinguish models of galaxy formation, e. g., Cold Dark Matter vs. Hot Dark Matter-- 5 eV neutrino contributions, etc. See for example Macminn, D., and J. R. Primack, 1995, astro- ph/ 9504032. Counts / bin Energy (GeV) (* assumes no intrinsic source cutoff) Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Dark matter problem Experimentally in spiral galaxies the ratio between the matter density and the Critical density W is : W lum ≤ 0.01 but from rotation curves must exist a galactic dark halo of mass at least: W halo ≥ 0.03 ÷ 0.1 from gravitational behavior of the galaxies in clusters the Universal mass density is : W halo @ 0.1 ÷ 0.3 from structure formation theories: W halo ≥ 0. 3 but from big bang nucleosinthesis the Barionic matter cannot be more then: W B ≤ 0. 1 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Candidates for Galactic Dark Matter • Massive Compact Halo Objects (MACHOs) • Low (sub- solar) mass stars. Standard baryonic composition. • Use gravity microlensing to study. • Could possibly account for 25% to 50% of Galactic Dark Matter. • Neutrinos • Small contribution if atmospheric neutrino results are correct, since mn< 1eV. • Large scale galactic structure hard to reconcile with neutrino dominated dark matter • Weakly Interacting Massive Particles ( WIMPs) • Non- Standard Model particles, ie: supersymmetric neutralinos • Heavy (> 10GeV) neutrinos from extended gauge theories. Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Microwave and infrared background Earth Flux absorption due to the interaction with the infrared and microwave background g ray source Microwave and infrared background Earth if the center of mass energy is: g e+ e- E=w1 J photons interactions produce electron positron pairs E=w2 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

(2a) Flux absorption due to the interaction with the infrared and microwave background The cross section of the process gg -> e+e- is: where re is the classical radius of the electron and: E=w1 g e+ e- E=w2 J w1 and w1 are respectively the energies of the low and the high energies gamma ray and J is their angle of incidence. Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

(3a) Flux absorption due to the interaction with the infrared and microwave background the ratio between the flux I(L) at a distance L from the source and the initial flux I can be written as: I(L)/Io=exp(-kg L) where kg is the absorption coefficient: that contains the cross section and the low energy photon distribution. For the microwave spectrum: g e+ e- E=w1 E=w2 J Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Ratio between surviving flux and initial flux versus photon energies for two different distances due to the sum of the infrared and black-body background A.Morselli , INFN/AE-94/22 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Energy density of the extragalactic diffuse background radiation Characteristic absorbed g ray energy (TeV): 103 102 10 1 0.1 Eg (TeV) 12.5 1.25 0.125 125 1250 12500 l (mm) Hegra , astro/ph/9802308 E2 n(E) (ev/cm3) Near Infrared Far Infrared Average models Dust Starlight Energy (ev) Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Comulative Extragalactic Background light as a function of redshift z Cold Dark Matter Model CHDM Cold Dark Matter Model WCDM=0.9 , Wb=0.1 early era of galaxy formation ( 1< zf < 3 ) CHDM = Cold + Hot Dark Matter Model WCDM=0.6 , Wn=0.3 , Wb=0.1 late era of galaxy formation ( 0.2 < zf < 1 ) Macminn & Primac astro-ph 950432 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Why Supersymmetry ? The standard electroweak model is very successful but nevertheless has some problems: • the unitarity of electroweak interaction breaks down at energy Scales < 1 TeV in the absence of a mechanism to account for electroweak symmetry breaking • it leaves many fundamental parameters unexplained (like sin2 JW ) • moreover the gauge structure in the standard model suggest the existence of a Grand Unified theory of electroweak and strong interaction at an energy around 10 16 GeV • … and at energies around the Plank mass 10 19 GeV there is the need of a theory that includes the Gravitational force because the quantum gravitational effects cannot be neglected. The Supersymmetry seems to be the most promising field of research to solve these problems. If Supersymmetry is true there is the prediction of the existence of a whole class of new particles that are the supersymmetric partners of the known particles. In particular the Lightest Supersymmetric Particle (LSP) must be stable by R-parity conservation and can escape detection due to its weakly interacting nature. Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Neutralino WIMPs Assume c present in the galactic halo • c is its own antiparticle => can annihilate in galactic halo producing gamma-rays, antiprotons, positrons…. • Antimatter not produced in large quantities through standard processes (secondary production through p + p --> p + X) • So, any extra contribution from exotic sources (c c annihilation) is an interesting signature • ie: c c --> p + X • Produced from (e. g.) c c --> q / g / gauge boson / Higgs boson and subsequent decay and/ or hadronisation. Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Supersymmetry introduces free parameters: In the MSSM, with Grand Unification assumptions the masses and couplings of the SUSY particles as well as their production cross sections, are entirely described once five parameters are fixed: • M2 the mass parameter of supersymmetric partners of gauge fields (gauginos) • the higgs mixing parameters m that appears in the neutralino and chargino mass matrices • m0, the common mass for scalar fermions at the GUT scale • A, the trilinear coupling in the Higgs sector • the ratio between the two vacuum expectation values of the Higgs fields defined as: tang b = v2 / v1 = <H2> / <H1> Experimental lower limit on the mass of the lightest neutralino assuming MSSM (Minimal Standard Supersymmetric Model) Lep , s = 189 GeV UHM : universal soft supersymmetry-breaking scalar masses for Higgs nUHM: non-universal 1999 : available LEP data 2000 : assessment of the likely sensitivity of data to be taken in 2000. ( the m<0 plot is similar) hep-ph/0004169 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata In the minimal supersymmetric extension of the Standard Model four neutral spin-1/2 Majorana particles are introduced: • the partners of the neutral gauge bosons B, W • the neutral CP-even higgsinos H01, H02. Diagonalizing the corresponding mass matrix, four mass eigenstates are obtained. The lightest of these, c , is commonly referred as the neutralino. It is useful to introduce the gaugino fraction Zg defined as: Zg= |N1|2 + |N2|2 and classify the neutralino as higgsino-like when Zg <0.01, mixed when 0.01 < Zg < 0.99 and gaugino like if Zg >0.99. Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

SuperSymmetric Dark Matter Possible signature: Gamma Ray from Neutralino Annihilation Annihilation at rest: bump around Neutralino mass fg 10 GeV 100 GeV Diffuse background A=pseudoscalar c±=chargino c0 =neutralino H=Higgs boson Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Signal rate from Supersymmetry The signal rate is : where: rc0.4 is the local halo neutralino density in units of 0.4 GeV/cm3 fhalo is a factor that can vary between 0.3 and 2 due to the uncertainty in modeling the galactic halo. Sensitivity of GLAST up to 300 GeV ~ 10-10 cm-2 s-1 with fhalo ~1, rc0.4 ~ 3 , fb = 2 10 -5 ( 100 MeV / E(MeV) ) -1.1 photon cm-2 s-1 sr-1 In two years, full eff. DE/E ~5% fmin ≥ 4 10 -10 ph cm-2 s-1 sr-1 DE/E ~10% fmin ≥ 6 10 -10 ph cm-2 s-1 sr-1 GLAST has the possibility to explore a good portion of the possible values of this parameters space Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Signal rate from Supersymmetry (2) (5bS) Signal rate from Supersymmetry (2) But in more general form we have: where: y is the angle between the line of sight and the Galactic center, r(y) is the distance along that line of sight I(y) is the angular dependence of the gamma-ray flux. The galactic dark matter density distribution can have the form r(r) ~ r-a with a ~ 1.8 and the predicted photon flux can be 104 brighter from certain directions! (the sources can appear nearly point-like) I(y) R ~ 8.5 kpc y Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Total photon spectrum from the galactic center from cc ann. g lines 50 GeV 300 GeV • Two-year scanning mode Infinite energy resolution With finite energy resolution Bergstrom et al. Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

GLAST Performance : Energy resolution for lateral photons sE/E =1.5% q > 560 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

(7S) Number of photons expected in GLAST for cc -> gg from a 1-sr cone near the galactic center gaugino-like higgsino-like neutralino Two-year scanning mode exposure. Each point is a different set of Minimal SuperSymmetric Standard Model parameters The galaxy dark matter halo profile giving the maximal flux has been assumed. The solid line shows the number of events needed to obtain a five-sigma detection over the galactic diffuse gamma-ray background as estimated from EGRET data. Bergstrom et al. astro-ph/ 9712318 g or Z c g Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Energy versus time For X and Gamma ray detectors Aldo Morselli 10/00 http://www.roma2.infn.it/infn/agile/ Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Sensitivity of g-ray detectors in 2002 All sensitivities are at 5s. Cerenkov telescopes sensitivities (Veritas, MAGIC, Whipple, Hess, Celeste, Stacee, Hegra) are for 50 hours of observations. Large field of view detectors sensitivities (AGILE, GLAST, Milagro,ARGO are for 1 year of observation. MAGIC sensitivity based on the availability of high efficiency PMT’s Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Distortion of the secondary antiproton flux induced by a signal from a heavy Higgsino-like neutralino. •Background from normal secondary production •Signal from very heavy (~ 1 TeV) neutralino annihilations ( astro-ph 9904086) Mass91 data from XXVI ICRC, OG.1.1.21 , 1999 • Caprice94 data from ApJ , 487, 415, 1997 Particles and photons are sensitive to different neutralinos. Gaugino-like particles are more likely to produce an observable flux of antiprotons whereas Higgsino-like annihilations are more likely to produce an observable gamma-ray signature Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

• •Background from normal secondary production •Signal from ~ 300 GeV Distortion of the secondary positron fraction induced by a signal from a heavy neutralino. •Background from normal secondary production (ApJ 493, 694, 1998) •Signal from ~ 300 GeV neutralino annihilations (Phys.Rev. D59 (1999) astro-ph 98008243) • Caprice98 data from XXVI ICRC, OG.1.1.21, 1999 Caprice94 data from ApJ , 532, 653, 2000 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Distortion of the secondary positron fraction induced by a signal from a heavy neutralino. Mc=336 GeV Ks=11.7 C2/7=1.53 Mc=2313 GeV Ks=1 104 C2/7=1.08 BR(e+e-) Mc=106 GeV Ks=19 C2/7=2.24 Mc=130 GeV Ks=54 C2/7=1.35 Baltz & Edsjö Phys.Rev. D59 (1999) astro-ph 9808243 Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Distortion of the secondary positron fraction induced by a signal from a heavy neutralino. Distortion of the secondary antiproton flux induced by a signal from a heavy Higgsino-like neutralino. Antiproton flux, m-2 s-1 sr-1 GeV-1 Energy of antiproton (GeV) Expected data from Pamela for one year of operation are shown in red. Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata antiproton positron Pamela Separating p from e- Magnet Silicon Calorimeter Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 10 GeV e- Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 10 GeV p Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Cosmic Ray Physics with charged particles: - Study of the origin and propagation of cosmic rays using sample of galactic and extragalactic material. - Test of cosmological models - Search for dark matter and supersymmetry Cosmic Ray Physics with photons: - Study of the origin of cosmic rays by looking one by one the sources of cosmic rays - Test of cosmological models - Test of galaxies formation models - Search for dark matter and supersymmetry - Complementary with gravitational waves detectors Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata Summary and 1st Conclusions • Neutralinos are a promising candidate for WIMP dark matter • Neutralinos can annihilate in the galactic halo ... • … this could give rise to high energy (> 10GeV) antiproton signature and/or gamma-ray signature. Pamela experiment is designed to measure antiproton spectrum from 80MeV to 190GeV. • >3 year mission large event samples • Combination of TRD + Si tracker + imaging Si- W calo + TOF (trigger) and anticoincidence can isolate a pure sample of antiprotons. • Engineering model currently under construction. • Flight model due ~ June 2002. • Launch: beginning 2003. In 2005 GLAST will search for gamma-ray signature Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata

Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 2nd Conclusions GLAST will explore a good portion of the supersymetric parameter space GLAST will explore the Cold and Hot Dark Matter contribution through the IR absorption of g-ray from extragalactic sources … and these are only additional items for GLAST ! Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata