CS 460 Spring 2011 Lecture 4.

Slides:



Advertisements
Similar presentations
Chapter 6, Sec Adversarial Search.
Advertisements

Adversarial Search Chapter 6 Sections 1 – 4. Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Adversarial Search Chapter 6 Section 1 – 4. Types of Games.
Games & Adversarial Search Chapter 5. Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent’s reply. Time.
Games & Adversarial Search
Artificial Intelligence Adversarial search Fall 2008 professor: Luigi Ceccaroni.
ICS-271:Notes 6: 1 Notes 6: Game-Playing ICS 271 Fall 2008.
Adversarial Search Chapter 6 Section 1 – 4.
Adversarial Search Chapter 5.
1 Game Playing. 2 Outline Perfect Play Resource Limits Alpha-Beta pruning Games of Chance.
Adversarial Search CSE 473 University of Washington.
Adversarial Search Chapter 6.
Artificial Intelligence for Games Game playing Patrick Olivier
Adversarial Search 對抗搜尋. Outline  Optimal decisions  α-β pruning  Imperfect, real-time decisions.
An Introduction to Artificial Intelligence Lecture VI: Adversarial Search (Games) Ramin Halavati In which we examine problems.
1 Adversarial Search Chapter 6 Section 1 – 4 The Master vs Machine: A Video.
10/19/2004TCSS435A Isabelle Bichindaritz1 Game and Tree Searching.
G51IAI Introduction to AI Minmax and Alpha Beta Pruning Garry Kasparov and Deep Blue. © 1997, GM Gabriel Schwartzman's Chess Camera, courtesy IBM.
Lecture 13 Last time: Games, minimax, alpha-beta Today: Finish off games, summary.
This time: Outline Game playing The minimax algorithm
Lecture 02 – Part C Game Playing: Adversarial Search
CS 561, Sessions Administrativia Assignment 1 due tuesday 9/24/2002 BEFORE midnight Midterm exam 10/10/2002.
1 Game Playing Chapter 6 Additional references for the slides: Luger’s AI book (2005). Robert Wilensky’s CS188 slides:
Game Playing CSC361 AI CSC361: Game Playing.
UNIVERSITY OF SOUTH CAROLINA Department of Computer Science and Engineering CSCE 580 Artificial Intelligence Ch.6: Adversarial Search Fall 2008 Marco Valtorta.
ICS-271:Notes 6: 1 Notes 6: Game-Playing ICS 271 Fall 2006.
Game Tree Search based on Russ Greiner and Jean-Claude Latombe’s notes.
Games & Adversarial Search Chapter 6 Section 1 – 4.
Game Playing State-of-the-Art  Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in Used an endgame database defining.
Adversarial Search Chapter 6 Section 1 – 4. Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Adversarial Search Chapter Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent reply Time limits.
ARTIFICIAL INTELLIGENCE (CS 461D) Princess Nora University Faculty of Computer & Information Systems.
Adversarial Search Chapter 6 Section 1 – 4. Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent reply Time.
Explorations in Artificial Intelligence Prof. Carla P. Gomes Module 5 Adversarial Search (Thanks Meinolf Sellman!)
Adversarial Search Chapter 5 Sections 1 – 4. AI & Expert Systems© Dr. Khalid Kaabneh, AAU Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
ADVERSARIAL SEARCH Chapter 6 Section 1 – 4. OUTLINE Optimal decisions α-β pruning Imperfect, real-time decisions.
Adversarial Search CMPT 463. When: Tuesday, April 5 3:30PM Where: RLC 105 Team based: one, two or three people per team Languages: Python, C++ and Java.
5/4/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 9, 5/4/2005 University of Washington, Department of Electrical Engineering Spring 2005.
Artificial Intelligence AIMA §5: Adversarial Search
Game Playing Why do AI researchers study game playing?
EA C461 – Artificial Intelligence Adversarial Search
Announcements Homework 1 Full assignment posted..
Last time: search strategies
PENGANTAR INTELIJENSIA BUATAN (64A614)
Adversarial Search and Game Playing (Where making good decisions requires respecting your opponent) R&N: Chap. 6.
Pengantar Kecerdasan Buatan
Game Playing.
David Kauchak CS52 – Spring 2016
Adversarial Search Chapter 5.
CS 188: Artificial Intelligence Fall 2007
Games & Adversarial Search
Games & Adversarial Search
Adversarial Search.
Artificial Intelligence
CSE 4705 Artificial Intelligence
Game playing.
Games & Adversarial Search
Games & Adversarial Search
Artificial Intelligence
Minimax strategies, alpha beta pruning
Approaches to search Simple search Heuristic search Genetic search
Game Playing Fifth Lecture 2019/4/11.
Games & Adversarial Search
Adversarial Search CMPT 420 / CMPG 720.
Adversarial Search CS 171/271 (Chapter 6)
Minimax strategies, alpha beta pruning
CS51A David Kauchak Spring 2019
Games & Adversarial Search
Adversarial Search Chapter 6 Section 1 – 4.
Presentation transcript:

CS 460 Spring 2011 Lecture 4

Overview Review Adversarial Search / Game Playing (chap 5 3rd ed, chap 6 2nd ed)

Review Evaluation of strategies Informed Search Local Search Completeness, time & space complexity, optimality Informed Search Best First Greedy Best First Heuristics: A* Admissible, Consistent Relaxed problems Dominance Local Search Hill climbing / gradient ascent Simulated annealing K-beam Genetic algorithms

Game playing /Adversarial search

Game tree (2-player, deterministic, turns)

Minimax

Properties of minimax Complete? Yes (if tree is finite) Optimal? Yes (against an optimal opponent) Time complexity? O(bm) Space complexity? O(bm) (depth-first exploration) For chess, b ≈ 35, m ≈100 for "reasonable" games  exact solution completely infeasible Do we need to explore every path?

α-β pruning example

α-β pruning example

α-β pruning example

α-β pruning example

α-β pruning example

Properties of α-β Pruning does not affect final result Good move ordering improves effectiveness of pruning With "perfect ordering," time complexity = O(bm/2)  doubles solvable depth of search A simple example of the value of reasoning about which computations are relevant (a form of metareasoning) Unfortunately, 35**50 is still an impossible number of searches

Why is it called α-β? α is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for max If v is worse than α, max will avoid it  prune that branch Define β similarly for min

Alpha-beta algorithm