2015 Xinjiang Pulsar and Gravitational-Wave School

Slides:



Advertisements
Similar presentations
Cosmological Structure Formation A Short Course III. Structure Formation in the Non-Linear Regime Chris Power.
Advertisements

Feedback Limits Rapid Growth Seed BHs at High Redshift Jianmin Wang, Yanmei Chen, Chen Hu Institute of High Energy Physics.
First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
Primordial Supernovae and the Assembly of the First Galaxies Daniel Whalen Bob Van Veelen X-2, LANL Utrecht Michael Norman Brian O’Shea UCSD T-6, LANL.
On the nature of AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Leicester, March.
AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Accretion and ejection in AGN, Como,
The Effects of X-rays on Star Formation and Black Hole Growth in Young Galaxies Ayçin Aykutalp (Kapteyn), John Wise (Georgia), Rowin Meijerink (Kapteyn/Leiden)
Pop III IMF Michael L. Norman Laboratory for Computational Astrophysics UC San Diego (with thanks to Andrea Ferrara & Mario Livio)
Primordial Star Formation: Constraints on the IMF from Protostellar Feedback Jonathan C. Tan ETH Zurich Christopher F. McKee UC Berkeley Eric G. Blackman.
Tidal Disruption from Supermassive Black Hole Binaries in Merging Galaxies: Before & After the Coalescence Shuo Li NAOC Collaborated with Rainer Spurzem,
Cosmological Structure Formation A Short Course
The Science of JWST Caleb Wheeler. Table of Contents First Paper Second Paper Nervous standing after I finish early and everyone is too bored to formulate.
RECOILING BLACK HOLES IN GALACTIC CENTERS Michael Boylan-Kolchin, Chung-Pei Ma, and Eliot Quataert (UC Berkeley) astro-ph/
AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Physics of Galactic Nuclei, Ringberg.
Cosmological MHD Hui Li Collaborators: S. Li, M. Nakamura, S. Diehl, B. Oshea, P. Kronberg, S. Colgate (LANL) H. Xu, M. Norman (UCSD), R. Cen (Princeton)
Cosmological evolution of Black Hole Spins Nikos Fanidakis and C. Baugh, S. Cole, C. Frenk NEB-XIII, Thessaloniki, June 4-6, 2008.
Felipe Garrido Goicovic Supervisor: Jorge Cuadra PhD thesis project January 2014.
MASSIVE BLACK HOLES: formation & evolution Martin Rees Cambridge University.
Formation of the First Stars
WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation March, 2003 Zoltán Haiman.
Lecture 3 - Formation of Galaxies What processes lead from the tiny fluctuations which we see on the surface of last scattering, to the diverse galaxies.
Forming and Feeding Super-massive Black Holes in the Young Universe Wolfgang J. Duschl Institut für Theoretische Astrophysik Universität Heidelberg.
Formation of the First Stars Under Protostellar Feedback Athena Stacy First Stars IV 2012.
THE ROLE OF BLACK HOLES IN GALAXY EVOLUTION Tiziana Di Matteo Carnegie Mellon University Volker Springel, Lars Hernquist, Phil Hopkins, Brant Robertson,
Gravitational Waves from Massive Black-Hole Binaries Stuart Wyithe (U. Melb) NGC 6420.
The Building Up of the Black Hole Mass- Stellar Mass Relation Alessandra Lamastra collaborators: Nicola Menci 1, Roberto Maiolino 1, Fabrizio Fiore 1,
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
M-σ. Predicted in based on self- regulated BH growth M ~ σ 5 (Silk & Rees) M ~ σ 4 (Fabian)
Supermassive Black Hole Growth from Cosmological N-body Simulations Miroslav Micic Kelly Holley-Bockelmann Steinn Sigurdsson Tom Abel Want more info? See.
Renaissance: Formation of the first light sources in the Universe after the Dark Ages Justin Vandenbroucke, UC Berkeley Physics 290H, February 12, 2008.
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
Abel, Bryan, and Norman, (2002), Science, 295, 5552 density molecular cloud analog (200 K) shock 600 pc.
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
Spins of supermassive black holes in quasars and galaxies Jian-Min Wang ( 王建民 ) Institute of High Energy Physics Chinese Academy of Sciences, Beijing Dec.
Quasars at the Cosmic Dawn Yuexing Li Penn State University Main Collaborators: Lars Hernquist (Harvard) Volker Springel (Heidelberg) Tiziana DiMatteo.
Coeval Evolution of Galaxies and Supermassive Black Holes : Cosmological Simulations J. A. de Freitas Pacheco Charline Filloux Fabrice Durier Matias Montesino.
The First Generation of SMBHs and Their Host Galaxies Columbia University AGN and Galaxy Evolution Castel Gandolfo 3-6 October, 2005 Zoltán (  So ł tan)
The Growth of the Stellar Seeds of Supermassive Black Holes Jarrett Johnson (LANL, MPE) with Bhaskar Agarwal (MPE), Claudio Dalla Vecchia (MPE), Fabrice.
Probing cosmic structure formation in the wavelet representation Li-Zhi Fang University of Arizona IPAM, November 10, 2004.
Strange Nuggets in the early and the present Universe Xiaoyu Lai ( 来小禹 ) Xinjiang University ( 新疆大学 ) 2015/9/29.
STScI, Feb. 27, Exploring Early Structure Formation with a Very Large Space Telecope Avi Loeb Harvard University Avi Loeb Harvard University.
Formation of the first galaxies and reionization of the Universe: current status and problems A. Doroshkevich Astro-Space Center, FIAN, Moscow.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Probing the First Star Formation by 21cm line Kazuyuki Omukai (Kyoto U.)
Lyman Alpha Spheres from the First Stars observed in 21 cm Xuelei Chen (Beijing) Jordi Miralda Escudé (IEEC, Barcelona).
The Dark Age and Cosmology Xuelei Chen ( 陈学雷 ) National Astronomical Observarories of China The 2nd Sino-French Workshop on the Dark Universe, Aug 31st.
Demography of supermassive black holes: mergers & gravitational waves Françoise Combes Observatoire de Paris Monday 9 November.
LISA double BHs Dynamics in gaseous nuclear disk.
Jonathan C. Tan Christopher F. McKee The Accretion Physics of Primordial Protostars.
First Stars and Reionization Andrea Ferrara SISSA/International School for Advanced Studies Trieste, Italy Five Answers for Five Questions.
Vatican 2003 Lecture 30 HWR Black Holes. Vatican 2003 Lecture 30 HWR Black Holes and Galaxy Centers Two most important energy production mechanisms in.
Properties of massive black hole mergers Marta Volonteri University of Michigan.
Gravitational radiation from Massive Black Hole Binaries Andrew Jaffe PTA “Focus group” — PSU/CGWP 22 July D. Backer, D. Dawe, A. Lommen.
Reionization of the Universe MinGyu Kim
Black Holes in the Universe Myungshin Im Astronomy Program, CEOU/Department of Physics & Astronomy, Seoul National University.
Miroslav Micic, Steinn Sigurdsson, Tom Abel, Kelly Holley-Bockelmann
Collapse of Small Scales Density Perturbations
WMAP Implications for Reionization
Outline Part II. Structure Formation: Dark Matter
Speaker: Bingxiao Xu Peking University
Luciano del Valle & Andrés Escala Universidad de Chile
The Growth of Supermassive Black Holes
Hideki Maki Department of Physics, Rikkyo University
Outline Part II. Structure Formation: Dark Matter
Super Massive Black Holes
FORMATION OF THE FIRST STARS IN THE UNIVERSE
The First Stars in the Universe: Formation and Feedback
Formation Processes of Early Cosmological Objects
Effects of early reionization on the formation of galaxies
Presentation transcript:

2015 Xinjiang Pulsar and Gravitational-Wave School 星系并合与超大质量双黑洞 袁业飞(Ye-Fei Yuan) 中国科学技术大学天文学系 2015/10/25

Outline Basic Observations(SMBMB) Hierarchical Models of Galaxy Formation Comic Evolution of MBHs BHB coalescence and Gravitational Waves

星系的并合

大质量黑洞的并合

超大质量黑洞双黑洞的观测 Komossa, et al., 2003, ApJL

超大质量黑洞双黑洞的观测 Fu, H et al., 2013, Nature

超大质量黑洞双黑洞的观测 NGC3393 Fabbiano 2011

超大质量黑洞双黑洞的观测 0402+379 (z=0.055) Rodriguez 2006

超大质量黑洞双黑洞的观测 4C12.50 Begelman et al , 1980, Nature

超大质量黑洞双黑洞的观测 Komossa, et al., 2003, ApJL

超大质量黑洞双黑洞的观测 3C326 Merritt& Ekers, 2002; Liu 2004

超大质量黑洞双黑洞的观测 HE0450–2958 Magain et al. 2005, nature

超大质量黑洞双黑洞的观测 BL Lac object OJ287: p=11.86 yr (Sillapaa et al. 1988)

超大质量黑洞双黑洞的观测 Hayasaki 2009 Yan et al. 2015, ApJ

超大质量黑洞双黑洞的观测

Basic Observations Most local galaxies host MBHs (106-109Msun) M-б(L) Relation (Ferrarese and Merritt 2000, Gebhardt et al 2000, Tremaine et al 2002) Co-evolution between galaxies, MBHs and QSOs Accretion history and Spins of MBHs (Soltan’s argument) (Yu and Tremanie 2002, Wang et al. 2006) Existence of SMBH (~109Msun) at z>6 (Fan et al. 2001; Barth et al. 2003; Willott et al. 2005)

High-z Supermassive BHs Example: SDSS 1114-5251 (Fan et al. 2003, Wu et al 2014) z=6.43 Mbh 4 x 109 M How did this SMBH grow so massive? e-folding (Edd) time: 4 x (/0.1) -1 107yr Mseed ~100 M Age of universe (z=6.43) 8 x 108 yr 

Questions 1)Existence of SMBH at t<1Gyr, while 2)Much smaller BHs exist in 13Gyr old galaxies

Hierarchical Models of Galaxy Formation

History of the Universe Barkana & Loeb, 2001, Phys. Rep.

Linear gravitational Growth Density contrast: Basic equations: Linearizaton for small perturbation: Einstein-de Sitter Universe:

z=0: Small scale structure: nonlinear Large scale structure: linear

Statistical description of the density perturbation:Probability Functional Gaussian Spectrum: Power Spectrum:

Mass fluctuation Zeldovich Spectrum: Transfer Function:

Mass fluctuation

Press-Schechter Theory(1974) Problem: BCEK Theory (Bond et al. 1991)

Extended PS Theory(Lacey & Cole 1993)

Condensations in Hierarchical Cosmology Consider linear growth of DM perturbations in concordance cosmology 30 20 collapse redshift Smallest scales condense first Jeans mass: ~104-5 M 10 2 3 4 5 6 7 log (Mass/ M)

Merging tree of dark matter halo and evolution of massive black holes time

Dark matter Halo Merging Tree—A Self Adaptive Code Time (Yuan et al. 2007)

Comic Evolution of SMBHs

Modeling the Gas in the First Halos: Cooling and Chemistry Collapsed Dark Matter halos virialize, gas shock heated to virial temperature Efficient cooling is a necessary condition for continued contraction following virialization Primordial gas chemically simple: H, He, H2

Radiative Cooling Function (H+He gas) COSMIC TIME MASS SCALE cf. Halo virial temperature: log( cooling rate / erg s-1 cm3 ) log( Temperature / K )

Cooling and Chemistry Molecular cooling to T~102 K (M~105 M ; z~20) End of “Dark Age” controlled by abundance of H2 : (Saslaw & Zipoy 1967 Haiman, Thoul & Loeb 1996) Molecular cooling to T~102 K (M~105 M ; z~20) Atomic cooling to T~104 K (M~108 M ; z~12) What is the molecular abundance? nH2/nH ~10-6 after recombination ~10-3 in collapsed objects

3D Simulations of a Primordial Gas Cloud Abel, Bryan & Norman (AMR) Bromm, Coppi & Larson (SPH) Mtot  106 M z  20 T200 K n 104 cm-3 M = few 100 M  f* < 1 % Temperature Density Gas Phase Chemistry: H + e-  H- +  H-+ H  H2+ e-

What forms in these early halos? STARS: FIRST GENERATION METAL FREE - massive stars with harder spectra - boost in ionizing photon rate by a factor of ~ 20 - return to “normal” stellar pops at Z≳10-3.5 Z⊙ (Tumlinson & Shull 2001 ; Bromm, Kudritzki & Loeb 2001; Schaerer 2002) SEED BLACK HOLES: (~102-6 M⊙ ) - boost by ~10 in number of ionizing photons/baryon - harder spectra up to hard X-rays - must eventually evolve to quasars and remnant holes [to z~6 super-massive BHs; probed by gravity waves] (Oh; Venkatesan & Shull; Haiman, Abel & Rees; Haiman & Menou)

Remnants of Massive Stars Heger et al. 2003 (for single, non-rotating stars) Z=Z metalicity Z=0 10M 25M 40M 140M 260M

Formation of seed BH Direct formation from a collapsing gas cloud? The loss of angular momentum Turbulent viscosity Global dynamical instabilities Formation of the seed BH Supermassive star  BH Quasi-star (a small BH + envelope) (Begelman et al. 2007)

z=10, T=300K z=20 z=10, T=4000 z=20 Lodato & Natarajan 2007

Remnant of Pop. III stars First star (z>10) forms at high –бpeaks of the primordial density field Top heavy stellar IMF: inefficient cooling of zero metallicity gas Little mass loss: zero metallicity star

First generation of stars are simpler in principle to model: Metal Free Gas Cooling Pop III Star Formation First generation of stars are simpler in principle to model: Chemistry of unenriched gas is simpler Gas has not yet been ionized or disturbed by winds from other stars Model Results Massive & short lived Early objects zcoll~ 20-30 H2 controls cooling Yoshida, Omukai, Hernquist, & Abel (2006)

Observational tests of seed formation Gravitational waves from seeds merging (LISA) Integrated BH mass density Volonteri et al. 2007

Cosmic evolution of SMBHs Seed black hole: Total accreted Mass: Spin change by accretion: SSD Model MHD Model (McKinney & Gammie 2004; Shapiro 2005)

Volonteri, Haardt, Madau, 2003 Dynamical Evolution of BH Binaries Gravitational slingshot (BHB interaction with background stars) Gravitational radiation Spin change by coalescences Test particle approximation The spin of the newly formed black hole after merging is the summation of the spin of the heavier BH in the binary and the angular momentum of the lighter one at ISCO. Triple BH interactions Volonteri, Haardt, Madau, 2003

Volonteri, M. et al. 2005

Distribution of BH spins (Yuan et al. 2007)

Distribution of accretion efficiencies (Yuan et al. 2007)

LF of QSOs Xu, Yuan et al, 2015, RAA

Xu, Yuan et al, 2015, RAA

BHB coalescence and Gravitational Waves

Gravitational radiation:

The mean comoving number density of potential BH pairs M1+M2<105,106 M1/M2=10-1,-2,-3 M1<105,106

M1=M2=1.1x105Msun z=13 Koushiappas &  Zentner 2006

S/N>1 Z=12 recoil z=16 S/N>5 Koushiappas &  Zentner 2006

recoil Z=16 Koushiappas &  Zentner 2006

Model dependent results (e.g. Sesana, Volonteri, Haardt 2007) Pop III KBD BVRlf,hf

S/N>5, LISA 3-year mission

Gong X. F & Xu S. N. & Shan B. et al. , 2012 Class. Quantum Grav

Gong X. F & Xu S. N. & Shan B. et al. , 2012 Class. Quantum Grav

Thanks!