Simulating the atmospheric composition during the last decades: Evaluation with long-term observational datasets and the impact of natural climate variability.

Slides:



Advertisements
Similar presentations
Chantier Méditerranée – Aix-En-Provence – Nov /17 1. Main regional stakes - Ambient air quality - Chemistry-climate interactions - Impact on ecosystems.
Advertisements

Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre Investigation of mutual influences of greenhouse effect and changes of dynamic.
1 Sun-Spots und El Nino Ulrich Cubasch Freie Universität Berlin.
A. Wahner et al., GEO-workshop Fifteen Years of Routine Aircraft Observations - MOZAIC A. Wahner, A. Volz-Thomas Research Centre Jülich J.-P.
Martin G. Schultz, MPI Meteorology, Hamburg GEMS proposal preparation meeting, Reading, Dec 2003 GEMS RG Global reactive gases monitoring and forecast.
Fires, Atmospheric Composition and Earth System Feedbacks Oliver Wild Centre for Atmospheric Science Cambridge JULES Science Meeting, Exeter, June.
Imposed ozone calculations Qualitatively same behaviour in all models (which qualitiatively agrees with the observations). Significant quantitative differences.
1 Evaluating water vapour in HadAM3 using 20 years of satellite data Richard Allan, Mark Ringer Met Office, Hadley Centre for Climate Prediction and Research.
1 NCAS SMA presentation 14/15 September 2004 The August 2002 European floods: atmospheric teleconnections and mechanisms Mike Blackburn (1), Brian Hoskins.
1 03/0045a © Crown copyright Evaluating water vapour in HadAM3 with 20 years of satellite data Richard P. Allan Mark A. Ringer Met Office, Hadley Centre.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Climate-Chemistry Interactions - User Requirements Martin Dameris DLR-Institut für.
Institut für Physik der Atmosphäre Ensemble Climate-Chemistry simulations for the past 40 years Volker Grewe and the DLR/MPI Team Institut für Physik der.
WP 312: Current chemical composition changes from different modes of transport E.Meijer, P.van Velthoven M.Gauss, I.S.A.Isaksen O.Dessens V.Grewe D.Caro,
Understanding Feedback Processes Outline Definitions Magnitudes and uncertainties Geographic distributions and priorities Observational requirements.
Part II: Observed Multi-Time Scale Variability in the Tropical Atlantic Part I: Biases in the NCEP CFS in the Tropical Atlantic Diagnosing CGCM bias and.
Whitecaps, sea-salt aerosols, and climate Magdalena D. Anguelova Physical Oceanography Dissertation Symposium College of Marine Studies, University of.
Henk Eskes, William Lahoz, ESTEC, 20 Jan 2004 The role of data assimilation in atmospheric composition monitoring and forecasting Henk Eskes, William Lahoz.
J. E. Williams, ACCRI, The Impact of ACARE reductions in Future Aircraft NOx Emissions on the Composition and Oxidizing Capacity of the Troposphere.
Another hint for a changing stratospheric circulation after 2001 Harald Bönisch (1), Andreas Engel (1), Thomas Birner (2), Peter Hoor (3) (1)Institute.
Interpreting MLS Observations of the Variabilities of Tropical Upper Tropospheric O 3 and CO Chenxia Cai, Qinbin Li, Nathaniel Livesey and Jonathan Jiang.
Review of Northern Winter 2010/11
Interannual variations in global OH radicals over the period in GEOS-Chem, and preliminary comparisons to other models I. Bey 1, S. Koumoutsaris.
The Atmosphere: Oxidizing Medium In Global Biogeochemical Cycles EARTH SURFACE Emission Reduced gas Oxidized gas/ aerosol Oxidation Uptake Reduction.
Intercontinental Transport and Climatic Effects of Air Pollutants Intercontinental Transport and Climatic Effects of Air Pollutants Workshop USEPA/OAQPS.
This Week—Tropospheric Chemistry READING: Chapter 11 of text Tropospheric Chemistry Data Set Analysis.
Assimilation of EOS-Aura Data in GEOS-5: Evaluation of ozone in the Upper Troposphere - Lower Stratosphere K. Wargan, S. Pawson, M. Olsen, J. Witte, A.
Influence of the sun variability and other natural and anthropogenic forcings on the climate with a global climate chemistry model Martin Schraner Polyproject.
Dynamical control of ozone transport and chemistry from satellite observations and CCMs Mark Weber 1, Ingo Wohltmann 2, Veronika Eyring 3, Markus Rex 2,
Analysis of a simulation with prognostic ozone in ARPEGE-Climat Jean-François Royer, Hubert Teysseidre, Hervé Douville, Sophie Tyteca Meteo-France,
Anthropogenic influence on stratospheric aerosol changes through the Asian monsoon: observations, modeling and impact Lamarque, Solomon, Portmann, Deshler,
Transport analysis and source attribution of the tropical CO seasonal and interannual variability in the UT/LS Junhua Liu and Jennifer Logan School of.
S5P tropospheric ozone product: Convective Cloud Differential method First German S5P Verification Meeting Bremen, November 2013 Pieter Valks DLR,
C20C Workshop, ICTP Trieste 2004 The impact of stratospheric ozone depletion and CO 2 on tropical cyclone behaviour in the Australian region Syktus J.
Seasonal variability of UTLS hydrocarbons observed from ACE and comparisons with WACCM Mijeong Park, William J. Randel, Louisa K. Emmons, and Douglas E.
The effect of pyro-convective fires on the global troposphere: comparison of TOMCAT modelled fields with observations from ICARTT Sarah Monks Outline:
Source vs. Sink Contributions to Atmospheric Methane Trends:
ANALYSIS OF TROPOSPHERIC OBSERVATIONS FROM GOME AND TOMS Randall Martin, Daniel Jacob, Jennifer Logan, Paul Palmer Harvard University Kelly Chance, Thomas.
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre H 2 O in models and observations Coupling of dynamics and atmospheric chemistry.
Cargese UTLS ozone and ozone trends 1 UTLS ozone and ozone trends D. Fonteyn (My apologies) Given by W. Lahoz (My thanks)
Recent Trend of Stratospheric Water Vapor and Its Impacts Steve Rieck, Ning Shen, Gill-Ran Jeong EAS 6410 Team Project Apr
Model Simulation of tropospheric BrO Xin Yang, J. Pyle and R. Cox Center for Atmospheric Science University of Cambridge 7-9 Oct Frascati, Italy.
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre total ozone fluctuations related to different influences Global Maps Mechanisms.
Trends in Tropical Water Vapor ( ): Satellite and GCM Comparison Satellite Observed ---- Model Simulated __ Held and Soden 2006: Robust Responses.
A modelling study on trends and variability of the tropospheric chemical composition over the last 40 years S.Rast(1), M.G.Schultz(2) (1) Max Planck Institute.
Status of MOZART-2 Larry W. Horowitz GFDL/NOAA MOZART Workshop November 29, 2001.
Dynamical Influence on Inter-annual and Decadal Ozone Change Sandip Dhomse, Mark Weber,
1 UIUC ATMOS 397G Biogeochemical Cycles and Global Change Lecture 14: Methane and CO Don Wuebbles Department of Atmospheric Sciences University of Illinois,
Climatic implications of changes in O 3 Loretta J. Mickley, Daniel J. Jacob Harvard University David Rind Goddard Institute for Space Studies How well.
04/12/011 The contribution of Earth degassing to the atmospheric sulfur budget By Hans-F. Graf, Baerbel Langmann, Johann Feichter From Chemical Geology.
Ko pplung von Dy namik und A tmosphärischer C hemie in der S tratosphäre MIcrophysical Processes in the Stratosphere and their nonlinear interactions with.
Critical Assessment of TOMS-derived Tropospheric Ozone: Comparisons with Other Measurements and Model Evaluation of Controlling Processes M. Newchurch.
The impact of solar variability and Quasibiennial Oscillation on climate simulations Fabrizio Sassi (ESSL/CGD) with: Dan Marsh and Rolando Garcia (ESSL/ACD),
Chemistry-Climate Interaction Studies in Japan Hajime Akimoto Atmospheric Composition Research Program Frontier Research System for Global Change Chemistry.
Picture: METEOSAT Oct 2000 Tropospheric O 3 budget of the South Atlantic region B. Sauvage, R. V. Martin, A. van Donkelaar, I. Folkins, X.Liu, P. Palmer,
Dynamical control of ozone transport and chemistry from satellite observations and coupled chemistry climate models Mark Weber 1, Sandip Dhomse 1, Ingo.
TTL workshop, Honolulu, October 17, 2012 The role of Stratospheric Aerosol and Ozone in Climate – AerOClim – Stratospheric and upper tropospheric processes.
HYMN: Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the biosphere GOCE-CT TM4 model evaluations
TROPOSPHERIC OZONE AS A CLIMATE GAS AND AIR POLLUTANT: THE CASE FOR CONTROLLING METHANE Daniel J. Jacob with Loretta J. Mickley, Arlene M. Fiore, Yaping.
Yuqiang Zhang1, Owen R, Cooper2,3, J. Jason West1
INTERCONTINENTAL TRANSPORT: CONCENTRATIONS AND FLUXES
The impacts of dynamics and biomass burning on tropical tropospheric Ozone inferred from TES and GEOS-Chem model Junhua Liu
Lupu, Semeniuk, Kaminski, Mamun, McConnell
Atmospheric modelling of the Laki eruption
Randall Martin Dalhousie University
Randall Martin, Daniel Jacob, Jennifer Logan, Paul Palmer
Daniel J. Jacob Harvard University
Analysis of CO in the tropical troposphere using Aura satellite data and the GEOS-Chem model: insights into transport characteristics of the GEOS meteorological.
WEST AFRICAN MONSOON EXPERIMENT (WAM)
Kelly Chance Smithsonian Astrophysical Observatory
Climatic implications of changes in O3
Presentation transcript:

Simulating the atmospheric composition during the last decades: Evaluation with long-term observational datasets and the impact of natural climate variability Volker Grewe, Martin Dameris, Jens Grenzhäuser and Pieter Valks German Aerospace Center ACCENT-GLOREAM, Paris, October, 2006

Institut für Physik der Atmosphäre Institutstag IPA 2006 Transport and Chemistry NOx - Ozon Production Ozone Production (Chapman ) Ozone Intrusion ENSO Solar Cycle Air Quality Emissions

Institut für Physik der Atmosphäre Institutstag IPA 2006 CCM E39/C (Stratosphere-troposphere)- Model description Surface, aircraft, lightning NO x Emissions [Tg N/a] Radiation Long-wave Short-wave Chemical Boundary Conditions Atmosphere: CFCs, at 10 hPa: ClX, NO y, Surface: CH 4, CO Chemistry (CHEM) Methane oxidation Heterogeneous Cl reactions PSC I, II, aerosols Dry/wet deposition Photolysis Feedback O 3, H 2 O, CH 4, N 2 O, CFCs Prognostic variables (vorticity, divergence, temperature, specific humidity, log-surface pressure, cloud water), hydrological cycle, diffusion, gravity wave drag, transport of tracers, soil model, boundary layer; sea surface temperatures. T30, 39 layers, top layer centred at 10 hPa Dynamics (ECHAM) Hein et al., 2001

Institut für Physik der Atmosphäre Institutstag IPA 2006 Transiente Model simulation - Boundary Conditions QBO Solar cycle and volcanoes Dameris et al., 2005

Institut für Physik der Atmosphäre Institutstag IPA 2006 Transiente Model simulation - Boundary Conditions Natural und anthropogenic NO x emissions: SourceReference Emissions: 1960 to 2000 IndustryBenkovitz et al., TgN/a Lightning Grewe et al., 2001 ~5 TgN/a Air trafficSchmitt und Brunner, TgN/a Surface Traffic Matthes, TgN/a ShipsCorbett et al, TgN/a Biomass BurningLee, pers. comm TgN/a Sea surface temperatures and ice coverage: Monthly means: UK Met Office Hadley Centre, hier: Beispiel für Juni 1985 (Rayner et al., 2003)

Institut für Physik der Atmosphäre Institutstag IPA 2006 Evolution of ozone column [DU]: Ozone hole High variability

Institut für Physik der Atmosphäre Institutstag IPA 2006 De-seasonalized anomalies of the ozone columns [%] QBO clearly visible Global Trend: ~20 DU y- Solar cycle recognizable, but QBO, volcanoes, trend overlaid

Institut für Physik der Atmosphäre Institutstag IPA 2006 E39/C vs. Observation: Anomalies of ozone column E39/C TOMS Ground stations (Bojkov and Fioletov, 1995; pers. com. Fioletov, 2004) calm, stable winter situations Beginning of 90s: stronger ozone losses Individual strong events well represented

Institut für Physik der Atmosphäre Validation of E39C results: Tropospheric Ozone Mean annual cycle of ozone at 47°N, 11°E ( ) E39C OBS E39C minus OBS Hohenpeißenberg Too weak seasonal cycle Cold bias too = high tropopause

Institut für Physik der Atmosphäre Validation of E39C results Mean annual cycle of ozone at 40°N, 105°W ( ) E39C OBS E39C minus OBS Boulder Similar conclusion

Institut für Physik der Atmosphäre Validation of E39C results 47°N, 11°E; 300 hPa 47°N, 11°E; 500 hPa 47°N, 11°E; 700 hPa 47°N, 11°E; 850 hPa Ozonesonde E39C Ozonesonde E39C Ozonesonde E39C Ozonesonde E39C Evolution of ozone anomalies at distinct levels [in ppbv] Hohenpeißenberg Variability smaller: Sampling or real difference ? Evolution not well reproduced: - very rough assumptions on emission data - no interannual variability of bb emissions

Institut für Physik der Atmosphäre Validation of E39C results 47°N, 11°E; 500 hPa Ozonesonde E39C Evolution of ozone anomalies [in ppbv] Some agreement: Coincidience or period where changes are controll by processes, which are better described

Institut für Physik der Atmosphäre April Average tropospheric tropiocal O 3 -Column below 200 hPa July October Januar 180°W 20°N Eq. 180°E 20°S Generally higher ozone values ! General pattern in agreement: Minimum over Pacific Maximum over Africa GOME (TEMIS)E39/C However, ozone maximum less pronounced: Biomass burning?

Institut für Physik der Atmosphäre Average tropospheric tropiocal O 3 -Column below 200 hPa Generally higher ozone values ! General pattern in agreement: Minimum over Pacific Maximum over Africa GOME (TEMIS)E39/C However, ozone maximum less pronounced: Biomass burning? 180°W 20°N Eq. 180°E 20°S MAM DJF JJA SON DU DU Minimum South America Maximum Africa Minimum Pacific

Institut für Physik der Atmosphäre How can we understand the simulated trends and the observed differences ? - Sensitivity studies (for selected periods) e.g. rerun period without volcanic eruption (Pinatubo) - Additional diagnostics Tracer: Ozone origin (Regions in Stratosphere/ Troposphere) Tracer: Ozone 'source') (biomass burning, Lightning,...) Mass fluxes

Institut für Physik der Atmosphäre Institutstag IPA 2006 Simulated ozone origin Grewe, 2006

Institut für Physik der Atmosphäre Institutstag IPA 2006 Grewe, 2004

Institut für Physik der Atmosphäre Institutstag IPA 2006 Ozone influx from the stratosphere to the troposphere De-seasonalized Monthly means x Estimate based on correlations with long-lived species: 475 Tg/year (Murphey and Fahey, 1994) and with flux calculations: NH: 252 Tg/a SH: 248 Tg/a (Olson et al., 2004) Signal of solar cycle identifyable especially on SH Large interannual variability No trends recognizable

Institut für Physik der Atmosphäre Institutstag IPA 2006 De-seasonalized ozone changes in the tropical UT Stratospheric ozone follows influx from stratosphere, producing ±2% variability out of a totale interannual var. of ±4% Lightning ozone correlated with Nino Index variability: ±1-2%

Institut für Physik der Atmosphäre Institutstag IPA 2006 Evolution of de-seasonalized ozone in NH lower troposphere (30N-90N; hPa) Year-to-year variability strongly dominated by stratosphere (±5%) Trend in ozone (25% increase): - results from increase in NO x emissions (Industry and traffic) - Trend reduction in 80s caused by lower emissions and lower stratospheric contribution. ~25% ~30% -5%

Institut für Physik der Atmosphäre Conclusions - Outlook (I) Stratosphere well reproduced Troposphere: Some similarities with observational data Main Discrepancies: Too weak seasonal cycle: - Too strong influence from stratosphere (chem lifetime) - Too much transport of upper troposphere tropical air - Too weak seasonal cycle of O 3 perturbation from anthropogenic emissions Less intense tropical ozone maximum Solution: Rerun with revised emission data (RETRO) biomass burning + anthrop. emission data including interannual and regional variability

Institut für Physik der Atmosphäre Conclusions - Outlook (II) Discrepancies: Less ozone in the upper troposphere: - Problem of cold bias = too high tropopause Solution: Lagrangian transport scheme Realistic water vapor transport 80% Reduction of Cold Bias (Stenke&Grewe, 2006) Despite discrepancies Stratospheric ozone variability influences trend (Trend reduction in 80s) Impact of stratospheric and tropospheric variability (El Nino) quantified.

Institut für Physik der Atmosphäre

Institut für Physik der Atmosphäre Future outlook adopted from Fishman et al., 2003

Institut für Physik der Atmosphäre JanFebMar AprMayJun JulAug Dec Sep NovOct GOME (CCD): Average O 3 -Column below 200 hPa °W 20°N Eq. 180°E 20°S

Institut für Physik der Atmosphäre E39C : Average tropospheric O 3 -column JanFebMar AprMayJun JulAug Dec Sep NovOct 20°N Eq. 180°W180°E 20°S

Institut für Physik der Atmosphäre Institutstag IPA 2006 Total cloud cover from the transient run of the ECHAM model in comparison to ISCCP, ECC, and SYNOP data sets ECC, ~11:30-16:30 UT ISCCP-D2, 12:00 UT SYNOP, 12:00 UT ECHAM, 24h Monthly means, area averaged d=+12% c=0.2 d=-16% c=0.7 d=0.0% c=0.4 R. Meerkötter, V. Grewe, M.Dameris, M. Ponater; (DLR-IPA), H. Mannstein (DLR-IPA), G. Gesell (DLR-DFD), C.König (DLR-IPA) Meerkötter et al., 2004

Institut für Physik der Atmosphäre Validation of E39C results Mean annual cycle of ozone at 13°S, 171°W ( ) E39C OBS E39C minus OBS Samoa

Institut für Physik der Atmosphäre Validation of E39C results Mean annual cycle of ozone at 70°S, 8°W ( ) E39C OBS E39C minus OBS Neumayer

Institut für Physik der Atmosphäre Validation of E39C results 47°N, 11°E; 500 hPa Ozonesonde E39C Ozonesonde E39C 40°N, 105°W; 500 hPa Evolution of ozone anomalies at distinct stations [in ppbv] Hohenpeißenberg Boulder

Institut für Physik der Atmosphäre Institutstag IPA 2006 Ozone influx: ozone origin Northern Hemisphere: Ozone mainly produced in NHMS TRMS TRTS NHMS: high inter-annual variability Southern Hemisphere: Ozone mainly produced in TRTS SHMS TRLS SHMS low inter-annual variability solar cycle visible Grewe, 2005