The Binomial Theorem Ms.M.M.

Slides:



Advertisements
Similar presentations
Digital Lesson The Binomial Theorem.
Advertisements

Binomial Theorem 11.7.
6.8 – Pascal’s Triangle and the Binomial Theorem.
Sequences, Series, and the Binomial Theorem
Math 143 Section 8.5 Binomial Theorem. (a + b) 2 =a 2 + 2ab + b 2 (a + b) 3 =a 3 + 3a 2 b + 3ab 2 + b 3 (a + b) 4 =a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b.
SFM Productions Presents: Another adventure in your Pre-Calculus experience! 9.5The Binomial Theorem.
Monday: Announcements Progress Reports this Thursday 3 rd period Tuesday/Wednesday STARR Testing, so NO Tutorials (30 minute classes) Tuesday Periods 1,3,5,7.
Copyright © 2014, 2010 Pearson Education, Inc. Chapter 9 Further Topics in Algebra Copyright © 2014, 2010 Pearson Education, Inc.
The Binomial Theorem.
Notes 9.2 – The Binomial Theorem. I. Alternate Notation A.) Permutations – None B.) Combinations -
What does Factorial mean? For example, what is 5 factorial (5!)?
2.4 Use the Binomial Theorem Test: Friday.
BINOMIAL EXPANSION. Binomial Expansions Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 The binomial theorem provides a useful method.
The Binomial Theorem 9-5. Combinations How many combinations can be created choosing r items from n choices. 4! = (4)(3)(2)(1) = 24 0! = 1 Copyright ©
Copyright © 2007 Pearson Education, Inc. Slide 8-1.
11.1 – Pascal’s Triangle and the Binomial Theorem
Warm up 1. Write the expression in expanded form, then find the sum. 2. Express the series using sigma notation.
5-7: The Binomial Theorem
Lesson 6.8A: The Binomial Theorem OBJECTIVES:  To evaluate a binomial coefficient  To expand a binomial raised to a power.
Binomial – two terms Expand (a + b) 2 (a + b) 3 (a + b) 4 Study each answer. Is there a pattern that we can use to simplify our expressions?
The Binomial Theorem.
Binomial Theorem & Binomial Expansion
2-6 Binomial Theorem Factorials
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Pg. 606 Homework Pg. 606 #11 – 20, 34 #1 1, 8, 28, 56, 70, 56, 28, 8, 1 #2 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 #3 a5 + 5a4b + 10a3b2 + 10a2b3.
Essential Questions How do we multiply polynomials?
8.5 The Binomial Theorem. Warm-up Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3.
Algebra 2 CC 1.3 Apply the Binomial Expansion Theorem Recall: A binomial takes the form; (a+b) Complete the table by expanding each power of a binomial.
Combination
The Binomial Theorem Section 9.2a!!!. Powers of Binomials Let’s expand (a + b) for n = 0, 1, 2, 3, 4, and 5: n Do you see a pattern with the binomial.
Section 8.5 The Binomial Theorem. In this section you will learn two techniques for expanding a binomial when raised to a power. The first method is called.
Objective: To use Pascal’s Triangle and to explore the Binomial Theorem.
Binomial Theorem and Pascal’s Triangle.
The Binomial Theorem.
The Binomial & Multinomial Coefficients
The binomial expansions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Pascal’s Triangle and the Binomial Theorem
Section 9-5 The Binomial Theorem.
Use the Binomial Theorem
The Binomial Expansion Chapter 7
4.2 Pascal’s Triangle and the Binomial Theorem
The Binomial Theorem; Pascal’s Triangle
Use the Binomial Theorem
The Binomial Theorem Objectives: Evaluate a Binomial Coefficient
10.2b - Binomial Theorem.
Binomial Expansion.
Digital Lesson The Binomial Theorem.
Objectives Multiply polynomials.
8.4 – Pascal’s Triangle and the Binomial Theorem
Digital Lesson The Binomial Theorem.
Binomial Theorem Pascal’s Triangle
4-2 The Binomial Theorem Use Pascal’s Triangle to expand powers of binomials Use the Binomial Theorem to expand powers of binomials.
Essential Questions How do we use the Binomial Theorem to expand a binomial raised to a power? How do we find binomial probabilities and test hypotheses?
Use the Binomial Theorem
11.9 Pascal’s Triangle.
11.6 Binomial Theorem & Binomial Expansion
LESSON 10–5 The Binomial Theorem.
Digital Lesson The Binomial Theorem.
The Binomial Theorem OBJECTIVES: Evaluate a Binomial Coefficient
Chapter 12 Section 4.
Digital Lesson The Binomial Theorem.
The binomial theorem. Pascal’s Triangle.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Digital Lesson The Binomial Theorem.
Digital Lesson The Binomial Theorem.
The Binomial Theorem.
9.2 The Binomial Theorem.
10.4 – Pascal’s Triangle and the Binomial Theorem
Section 11.7 The Binomial Theorem
Presentation transcript:

The Binomial Theorem Ms.M.M

Expanding Binomials Expanding a binomial such as (a + b)n means to write the factored form as a sum. (a + b)0 = 1 (a + b)1 = a + b (a + b)2 = a2 + 2ab + b2 (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 1 term 2 terms 3 terms 4 terms 5 terms 6 terms Ms.M.M

Expanding Binomials (a + b)0 = 1 (a + b)1 = a + b (a + b)2 = a2 + 2ab + b2 (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 The expansion of (a + b)n contains n + 1 terms. The first term is an and the last term is bn. The powers of a decrease by 1 for each term; the powers of b increase by 1 for each term. The sum of the exponents of a and b is n. Ms.M.M

Pascal’s Triangle There are also patterns in the coefficients of the terms. When written in a triangular array, the coefficients are called Pascal’s triangle. Ms.M.M

Pascal’s Triangle (a + b)0 (a + b)1 (a + b)2 (a + b)3 (a + b)4 1 1 1 2 1 1 3 3 1 4 6 4 1 1 5 10 10 5 1 n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 1 5 6 1 6 15 20 15 6 1 Add the consecutive numbers in the row for n = 5 and write each sum “between and below” the pair. Ms.M.M

Pascal’s Triangle Example: Expand (a + b)7. Use n = 7 row of Pascal’s triangle as the coefficients and the noted patterns. 1 6 15 20 15 6 1 n = 6 1 7 21 35 35 21 7 1 n = 7 (a + b)7 = 1a7 + 7a6b + 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7ab6 + 1b7 Ms.M.M

Factorials Factorial of n: n! If n is a natural number, then An alternative method for determining the coefficients of (a + b)n is based on using factorials. The factorial of n, written n! (read “n factorial”), is the product of the first n consecutive natural numbers. Factorial of n: n! If n is a natural number, then n! = n(n – 1)(n – 2)(n – 3) . . . ∙ 3 ∙ 2 ∙ 1. The factorial of 0, written 0!, is defined to be 1. Ms.M.M

Evaluating Factorials Example: Evaluate each expression. Ms.M.M

Binomial Theorem Binomial Theorem If n is a positive integer, then It can be proved that the coefficients of terms in the expansion of (a + b)n can be expressed in terms of factorials. Following the earlier patterns and using the factorial expressions of the coefficients, we have the binomial theorem. Binomial Theorem If n is a positive integer, then Ms.M.M

Binomial Theorem Example: Use the binomial theorem to expand (x + 3)4. Ms.M.M

Binomial Theorem Example: Use the binomial theorem to expand (3a – 5b)6. Ms.M.M

Binomial Expansion (r + 1)st Term in a Binomial Expansion The (r + 1)st term of the binomial expansion of (a + b)n is Ms.M.M

Binomial Expansion Example: Find the ninth term in the expansion of (3x – 5y)10. n = 10, a = 3x, b = – 5y, r + 1 = 9, therefore r = 8 Ms.M.M