6-8 The Binomial Theorem.

Slides:



Advertisements
Similar presentations
Binomial Theorem 11.7.
Advertisements

6.8 – Pascal’s Triangle and the Binomial Theorem.
The binomial theorem 1 Objectives: Pascal’s triangle Coefficient of (x + y) n when n is large Notation: ncrncr.
Monday: Announcements Progress Reports this Thursday 3 rd period Tuesday/Wednesday STARR Testing, so NO Tutorials (30 minute classes) Tuesday Periods 1,3,5,7.
Binomial Distributions
The Binomial Theorem.
Binomial Distributions
What does Factorial mean? For example, what is 5 factorial (5!)?
Binomial Expansion Honors Advanced Algebra Presentation 2-3.
2.4 Use the Binomial Theorem Test: Friday.
13.5 The Binomial Theorem. There are several theorems and strategies that allow us to expand binomials raised to powers such as (x + y) 4 or (2x – 5y)
The Binomial Theorem 9-5. Combinations How many combinations can be created choosing r items from n choices. 4! = (4)(3)(2)(1) = 24 0! = 1 Copyright ©
11.1 – Pascal’s Triangle and the Binomial Theorem
Aim: Binomial Theorem Course: Alg. 2 & Trig. Do Now: Aim: What is the Binomial Theorem and how is it useful? Expand (x + 3) 4.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–5) CCSS Then/Now New Vocabulary Example 1:Real-World Example: Use Pascal’s Triangle Key Concept:
Warm up 1. Write the expression in expanded form, then find the sum. 2. Express the series using sigma notation.
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
Binomial – two terms Expand (a + b) 2 (a + b) 3 (a + b) 4 Study each answer. Is there a pattern that we can use to simplify our expressions?
The Binomial Theorem.
Binomial Theorem & Binomial Expansion
The Binomial Theorem. (x + y) 0 Find the patterns: 1 (x + y) 1 x + y (x + y) 2 (x + y) 3 x 3 + 3x 2 y + 3xy 2 + y 3 (x + y) 4 (x + y) 0 (x + y) 1 (x +
2-6 Binomial Theorem Factorials
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
7.1 Pascal’s Triangle and Binomial Theorem 3/18/2013.
Pg. 606 Homework Pg. 606 #11 – 20, 34 #1 1, 8, 28, 56, 70, 56, 28, 8, 1 #2 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 #3 a5 + 5a4b + 10a3b2 + 10a2b3.
8.5 The Binomial Theorem. Warm-up Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3.
Algebra 2 CC 1.3 Apply the Binomial Expansion Theorem Recall: A binomial takes the form; (a+b) Complete the table by expanding each power of a binomial.
Section 8.5 The Binomial Theorem. In this section you will learn two techniques for expanding a binomial when raised to a power. The first method is called.
Section 8.5 The Binomial Theorem.
Binomial Theorem and Pascal’s Triangle.
Splash Screen.
Splash Screen.
The Binomial Theorem.
The binomial expansions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Pascal’s Triangle and the Binomial Theorem
Copyright © Cengage Learning. All rights reserved.
Section 9-5 The Binomial Theorem.
Use the Binomial Theorem
The Binomial Theorem Ms.M.M.
The Binomial Expansion Chapter 7
A quick and efficient way to expand binomials
The Binomial Theorem; Pascal’s Triangle
Use the Binomial Theorem
The Binomial Theorem Objectives: Evaluate a Binomial Coefficient
Simplify each expression by combining like terms.
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
10.2b - Binomial Theorem.
Binomial Expansion.
6.8 – Pascal’s Triangle and the Binomial Theorem
8.4 – Pascal’s Triangle and the Binomial Theorem
TCM – DO NOW A peer believes that (a+b)3 is a3 + b3 How can you convince him that he is incorrect? Write your explanation in your notes notebook.
Binomial Theorem Pascal’s Triangle
4-2 The Binomial Theorem Use Pascal’s Triangle to expand powers of binomials Use the Binomial Theorem to expand powers of binomials.
Essential Questions How do we use the Binomial Theorem to expand a binomial raised to a power? How do we find binomial probabilities and test hypotheses?
Use the Binomial Theorem
Binomial Expansion L.O. All pupils understand why binomial expansion is important All pupils understand the pattern binomial expansion follows All pupils.
11.9 Pascal’s Triangle.
Evaluate the expression.
11.6 Binomial Theorem & Binomial Expansion
LESSON 10–5 The Binomial Theorem.
The Binomial Theorem OBJECTIVES: Evaluate a Binomial Coefficient
The binomial theorem. Pascal’s Triangle.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
ALGEBRA II HONORS/GIFTED - SECTION 5-7 (The Binomial Theorem)
6.8 – Pascal’s Triangle and the Binomial Theorem
HW: Finish HPC Benchmark 1 Review
ALGEBRA II HONORS/GIFTED - SECTION 5-7 (The Binomial Theorem)
10.4 – Pascal’s Triangle and the Binomial Theorem
Warm Up 1. 10C P4 12C P3 10C P3 8C P5.
Presentation transcript:

6-8 The Binomial Theorem

Objectives Binomial Expansion & Pascal’s Triangle The Binomial Theorem

Bellringer In your notebook, solve the following problems (a + b) = 2 3 4

Vocabulary Pascal’s Triangle (a + b) (a + b) (a + b) (a + b) (a + b) (a + b) 1 (a + b) 2 (a + b) 3 (a + b) 4 (a + b) 5 (a + b)

How to Find Pascal’s Triangle Binomial Expansion Example

Using Pascal’s Triangle Use Pascal’s Triangle to expand (a + b)5. Use the row that has 5 as its second number. The exponents for a begin with 5 and decrease.      1a5b0 + 5a4b1 + 10a3b2 + 10a2b3 + 5a1b4 + 1a0b5 The exponents for b begin with 0 and increase. In its simplest form, the expansion is a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.

Expanding a Binomial Use Pascal’s Triangle to expand (x – 3)4. First write the pattern for raising a binomial to the fourth power. 1 4 6 4 1   Coefficients from Pascal’s Triangle. (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 Since (x – 3)4 = (x + (–3))4, substitute x for a and –3 for b. (x + (–3))4 = x4 + 4x3(–3) + 6x2(–3)2 + 4x(–3)3 + (–3)4 = x4 – 12x3 + 54x2 – 108x + 81 The expansion of (x – 3)4 is x4 – 12x3 + 54x2 – 108x + 81.

Vocabulary You can use the Binomial Theorem to also expand a binomial. I will demonstrate on the board. You can follow along on page 354 of your book.

Using the Binomial Theorem Use the Binomial Theorem to expand (x – y)9. Write the pattern for raising a binomial to the ninth power. (a + b)9 = 9C0a9 + 9C1a8b + 9C2a7b2 + 9C3a6b3 + 9C4a5b4 + 9C5a4b5 + 9C6a3b6 + 9C7a2b7 + 9C8ab8 + 9C9b9 Substitute x for a and –y for b. Evaluate each combination. (x – y)9 = 9C0x9 + 9C1x8(–y) + 9C2x7(–y)2 + 9C3x6(–y)3 + 9C4x5(–y)4 + 9C5x4(–y)5 + 9C6x3(–y)6 + 9C7x2(–y)7 + 9C8x(–y)8 + 9C9(–y)9 = x9 – 9x8y + 36x7y2 – 84x6y3 + 126x5y4 – 126x4y5 + 84x3y6 – 36x2y7 + 9xy8 – y9 The expansion of (x – y)9 is x9 – 9x8y + 36x7y2 – 84x6y3 + 126x5y4 – 126x4y5 + 84x3y6 – 36x2y7 + 9xy8 – y9.

Real World Example Dawn Staley makes about 90% of the free throws she attempts. Find the probability that Dawn makes exactly 7 out of 12 consecutive free throws. Since you want 7 successes (and 5 failures), use the term p7q5. This term has the coefficient 12C5. Probability (7 out of 10) = 12C5 p7q5 = • (0.9)7(0.1)5 The probability p of success = 90%, or 0.9. 12! 5! •7! = 0.0037881114 Simplify. Dawn Staley has about a 0.4% chance of making exactly 7 out of 12 consecutive free throws.

Homework Pg 355 # 1, 2, 13, 14