Search for local neutrino sources at BUST.

Slides:



Advertisements
Similar presentations
Simulation of Neutrino Factory beam and quasielastic scattering off electrons in the near detector Yordan Karadzhov University of Sofia “St. Kliment Ohridski”
Advertisements

Recent Results from Super-Kamiokande on Atmospheric Neutrino Measurements Choji Saji ICRR,Univ. of Tokyo for the Super-Kamiokande collaboration ICHEP 2004,
JNM Dec Annecy, France The High Resolution Fly’s Eye John Matthews University of Utah Department of Physics and High Energy Astrophysics Institute.
Lorenzo Perrone (University & INFN of Lecce) for the MACRO Collaboration TAUP 2001 Topics in Astroparticle and underground physics Laboratori Nazionali.
Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.
21 ECRS, Kosice, 12/09/2008 Trapped charge particles measurements in the radiation belt by PAMELA instrument Vladimir V. Mikhailov (MEPHI) for PAMELA collaboration.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
SN 1987A – HISTORICAL VIEW HISTORICAL VIEW ABOUT REGISTRATION OF THE NEUTRINO SIGNAL WITH BAKSAN, KAMIOKANDE-II, IMB DETECTORS I.V. Krivosheina, NIRFI,
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
S K The Many Uses of Upward- going Muons in Super-K Muons traveling up into Super-K from high-energy  reactions in the rock below provide a high-energy.
1 Gamma-Ray Astronomy with GLAST May 24, 2008 Toby Burnett WALTA meeting.
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
New results from K2K Makoto Yoshida (IPNS, KEK) for the K2K collaboration NuFACT02, July 4, 2002 London, UK.
1 A Search for Massive Magnetic Monopoles at the Baksan Underground Scintillation Telescope A Search for Massive Magnetic Monopoles at the Baksan Underground.
Variations of the high energy muon flux and space-time structure of the temperature profile in the atmosphere M.G. Kostyuk 1, V.B. Petkov 1, R.V. Novoseltseva.
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
International research project GALA: Monitoring of high energy gamma-ray astrophysical sources.
1 CANGAROO-III Masaki Mori* for the CANGAROO team *ICRR, The University of Tokyo ICRR internal talk, October 19, 2005.
4. Einstein Angle and Magnification The angular deflection for a relativistic neutrino with mass m ʋ that passes by a compact lens of mass M with impact.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
Wednesday, Feb. 14, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #6 Wednesday, Feb. 14, 2007 Dr. Jae Yu 1.Neutrino Oscillation Formalism 2.Neutrino.
Radio galaxy Elliptical Fanaroff-Riley type I “Misaligned” BL Lac (~ 60  ) Distance 3.5 Mpc Parameter Value  (J2000) 201   (J2000) -43 
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
CEA DSM Irfu Reconstruction and analysis of ANTARES 5 line data Niccolò Cottini on behalf of the ANTARES Collaboration XX th Rencontres de Blois 21 / 05.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
Villa Olmo Search for neutrino bursts from gravitational collapse of stars at the Baksan Underground Scintillation Telescope Yu.F. Novoseltsev,
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
High-energy Electron Spectrum From PPB-BETS Experiment In Antarctica Kenji Yoshida 1, Shoji Torii 2 on behalf of the PPB-BETS collaboration 1 Shibaura.
Birth of Neutrino Astrophysics
PoGO_G4_ ppt1 Study of optimized fast scintillator length for the astronomical hard X- ray/soft gamma-ray polarimeter PoGO November 1, 2004 Tsunefumi.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
32nd International Cosmic Ray Conference, August , 2011,Beijing 1 R.V. Novoseltseva, M.M. Boliev, I.M. Dzaparova, M.M. Kochkarov,Yu.F. Novoseltsev,
Strategies in the search for astrophysical neutrinos Yolanda Sestayo, MPI-k Heidelberg for the IceCube collaboration VLVνT 09, Athens.
Detecting a Galactic Supernova with H2 or GEO
The “Carpet-2” multipurpose air shower array of the Baksan Neutrino Observatory INR of RAS A.U. Kudzhaev Institute for Nuclear Research, Russian Academy.
Fast neutron flux measurement in CJPL
Neutrino factory near detector simulation
The Transition Radiation Detector for the PAMELA Experiment
Detecting a Galactic Supernova with H2 or GEO
2-8 July 2017 KBR, Terskol (BNO); KChR, Nizhnij Arkhyz (SAO)
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Astroparticle physics experiments in the Baksan Neutrino Observatory
L/E analysis of the atmospheric neutrino data from Super-Kamiokande
GAMMA-400 performance a,bLeonov A., a,bGalper A., bKheymits M., aSuchkov S., aTopchiev N., bYurkin Y. & bZverev V. aLebedev Physical Institute of the Russian.
Performance of the AMANDA-II Detector
CALET-CALによる ガンマ線観測初期解析
John Kelley for the IceCube Collaboration
GLAST Workshop April 13, 2007 Argonne National Lab
Diffuse neutrino flux J. Brunner CPPM ESA/NASA/AVO/Paolo Padovani.
Status of Neutron flux Analysis in KIMS experiment
Claudio Bogazzi * - NIKHEF Amsterdam ICRC 2011 – Beijing 13/08/2011
CALET-CALによる ガンマ線観測初期解析
P. Sapienza, R. Coniglione and C. Distefano
Some Comments to the Neutrinoless Double Beta-Decay
More on Milagro Observations of TeV Diffuse Emission in Cygnus
University of Wisconsin-Madison
Presentation transcript:

Search for local neutrino sources at BUST. M.M. Boliev for BUST Collaboration Institute for Nuclear Research of the Russian Academy of Sciences BNO 50

Baksan Underground scintillation telescope (BUST) Effective depth - 850 hg/cm2 17 m 17 m 11 m the scintillator CnH2n+2 (n ≈ 9) the total mass of scintillator is 330 t (3180 counters) three lower horizontal layers (the interior) -130 t, 1200 counters counter's threshold: inner planes – 8 MeV outer planes –10 MeV Angular resolution – 1.5° BNO 50

First upward-going muon Event: Dec 14 1918 08:31:10 Baksan neutrino experiment is in operation from Dec. 1978. Registration method: time-of-flight X – Z view Y – Z view t4=45ns t3=35ns t2=19ns t1=8ns First upward-going muon Event: Dec 14 1918 08:31:10 BNO 50

Live time (Dec 1978 ÷ May 2017): 31.05 years In 1978 ÷ 2000 years two hardware triggers are used in order to reject downward going atmospheric muons. Trigger I covers the zenith angle range 95 ÷ 180 while trigger II selects horizontal muons in the range 80 ÷ 100 . The hardware trigger efficiency of 99% has been measured with the flux of atmospheric muons. Since 2000 no use any hardware triggers. Live time (Dec 1978 ÷ May 2017): 31.05 years Upward-going muons (νμ events): 1635 — triggered + non-triggered Horizontal muons: 592 events , triggered + non-triggered BNO 50

Events distribution in equatorial coordinates (α,δ) BNO 50

Events distribution in galactic coordinates (b,l) Latitude(°) Longitude(°) BNO 50

BNO 50

Для получения величины потока от предполагаемого источника необходимо знать эффективную площадь и время наблюдения в этом телесном угле. Распределение времени по склонению: Non-visible δ≥ +44° Full time visible δ≤ -46° BNO 50

Flux limits for AP objects (rc= 5°) R.A.(°) Dec.(°) Expect N Events μ Flux (cm-2 s-1) 90% C.L. Gal. C. 265.6° -28.9 6.5 5 0.32∙10-14 Crab (NGC 1952) 83.6 +22.0 1.9 0.87∙10-14 Vela X-1 135.5 -40.3 4 0.15∙10-14 SS433 288.0 +5.0 2.8 1 0.63∙10-14 3c 273 187.3 +2.0 2.9 0.52∙10-14 Cen A (NGC 5128) 201.4 -43.0 6.8 Cen X-3 170.3 -60.6 6.3 3 0.11∙10-14 Geminga (SN 437) 98.5 +17.8 2.1 2 1.35∙10-14 Cygnus X-3 307.7 +40.8 0.1 0.99∙10-14 Scorpius X-1 245.0 -15.6 4.2 0.37∙10-14 BNO 50

Search for electron neutrinos associated with gravitational wave events GW150914 and GW151226 (and LVT151012) at the BUST: (1200 + 1020) counters → 200 tons of LS → 1031 nuclei of 12C no double-signal events during ±1 day The electron neutrino fluence upper limit without oscillation and assuming a monochromatic spectrum BNO 50

Total integrated electron neutrino fluence, BUST νe: GW150914, GW151226 и LVT151012 Total integrated electron neutrino fluence, 21 МэВ ≤ E ≤ 111 МэВ, dN/dE ~ E-2 I ≤ 5.6·1011 νe/cm2 The electron neutrino luminosity upper limits (without oscillation). GW150914 L0 = 3.·1061 эрг GW151226 L0 = 3.5·1061 эрг LVT151012 L0 = 2.2·1062 эрг BNO 50

Search for muon neutrinos/antineutrinos associated with gravitational wave events GW150914: no neutrino events in ± 7 days Total integrated muon neutrino+antineutrino fluence (without oscillation) 1 GeV ≤ E ≤ 100 GэВ, dN/dE ~ E-2 I ≤ 3631 ν/cm2 BNO 50

Upper limits on neutrino energy fluence from GW150914 dN/dE ~ E-2 E1 = 1 GeV, E2 = 100 GeV Emin = 1 GeV, Emax = 105 GeV The muon neutrino+antineutrino luminosity upper limits. L0 = 6.9·1054 эрг BNO 50

BNO 50

BNO 50 No local sources of muon neutrinos was found . Upper limits for some astrophysical objects. No coincidence or correlations of νμ and νe BUST data with gravitational wave events . BNO 50

min Seff BNO 50

BNO 50

BNO 50

BNO 50