LHCb prospects in flavour physics and CP violation

Slides:



Advertisements
Similar presentations
Measurement of  David Hutchcroft, University of Liverpool BEACH’06      
Advertisements

Measurements of the angles of the Unitarity Triangle at B A B AR Measurements of the angles of the Unitarity Triangle at B A B AR PHENO06 Madison,15-18.
Andrey Golutvin Moriond Prospects of search for New Physics in B decays at LHC Andrey Golutvin ITEP / Moscow - In CP - violation - In rare decays.
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
CP Violation Reach at Very High Luminosity B Factories Abi Soffer Snowmass 2001 Outline: Ambiguities B  DK B  D*     etc. B  D*  a 0   etc. (“designer.
A. BondarModel-independent φ 3 measurement August 6, 2007Charm 2007, Cornell University1/15 γ/φ 3 model-independent Dalitz analysis (Dalitz+CP tagged Dalitz.
Recent Charm Results From CLEO Searches for D 0 -D 0 mixing D 0 -> K 0 s  +  - D 0 ->K *+ l - Conclusions Alex Smith University of Minnesota.
LHCb Strategies for  from B→DK Yuehong Xie University of Edinburgh for the LHCb Collaboration ADS with B + →DK + and B 0 → DK* 0 Dalitz with B + →DK +
1. 2 July 2004 Liliana Teodorescu 2 Introduction  Introduction  Analysis method  B u and B d decays to mesonic final states (results and discussions)
Chris Barnes, Imperial CollegeWIN 2005 B mixing at DØ B mixing at DØ WIN 2005 Delphi, Greece Chris Barnes, Imperial College.
Φ 3 measurements at B factories Yasuyuki Horii Kobayashi-Maskawa Institute, Nagoya University, Japan Epiphany Conference, Cracow, 9th Jan
Beauty 2006 R. Muresan – Charm 1 Charm LHCb Raluca Mureşan Oxford University On behalf of LHCb collaboration.
CP Violation and CKM Angles Status and Prospects Klaus Honscheid Ohio State University C2CR 2007.
M. Adinolfi - University of Bristol1/19 Valencia, 15 December 2008 High precision probes for new physics through CP-violating measurements at LHCb M. Adinolfi.
1 Performance Studies for the LHCb Experiment Performance Studies for the LHCb Experiment Marcel Merk NIKHEF Representing the LHCb collaboration 19 th.
LHCb status of CKM  from tree-level decays Stefania Ricciardi, STFC Rutherford Appleton Laboratory On behalf of the LHCb Collaboration Stefania Ricciardi,
Pavel Krokovny Heidelberg University on behalf of LHCb collaboration Introduction LHCb experiment Physics results  S measurements  prospects Conclusion.
Pavel Krokovny, KEK Measurement of      1 Measurements of  3  Introduction Search for B +  D (*)0 CP K +  3 and r B from B +  D 0 K + Dalitz.
 3 measurements by Belle Pavel Krokovny KEK Introduction Introduction Apparatus Apparatus Method Method Results Results Summary Summary.
B→DK strategies in LHCb (Part I) Mitesh Patel (CERN) (on behalf of the LHCb Collaboration) 6 th February 2006 FLAVOUR IN THE ERA OF THE LHC.
Study of exclusive radiative B decays with LHCb Galina Pakhlova, (ITEP, Moscow) for LHCb collaboration Advanced Study Institute “Physics at LHC”, LHC Praha-2003,
Prospects for B  hh at LHCb Eduardo Rodrigues On behalf of the LHCb Collaboration CKM2008 Workshop, Rome, 9-13 September 2008 LHCb.
3/13/2005Sergey Burdin Moriond QCD1 Sergey Burdin (Fermilab) XXXXth Moriond QCD 3/13/05 Bs Mixing, Lifetime Difference and Rare Decays at Tevatron.
M.N MinardAspen Winter Meeting LHCb Physics Program On behalf of LHCb collaboration M.N Minard (LAPP) Status LHCb ( R.Jacobson) Single arm spectrometer.
CP Violation Studies in B 0  D (*)  in B A B A R and BELLE Dominique Boutigny LAPP-CNRS/IN2P3 HEP2003 Europhysics Conference in Aachen, Germany July.
1 EPS03, July 17-23, 2003Lorenzo Vitale Time dependent CP violation studies in D(*)D(*) and J/ψ K* Lorenzo Vitale INFN Trieste On behalf of BaBar and Belle.
Prospects for  at LHCb Val Gibson (University of Cambridge) On behalf of the LHCb collaboration Physics at the LHC Split, October 3 rd 2008.
Prospects for at LHCb William Reece Imperial College London Physics at the LHC, 3 rd October 2008.
Measurements of  at LHCb Mitesh Patel (CERN) (on behalf of the LHCb Collaboration) 14th December 2006.
Measurements of   Denis Derkach Laboratoire de l’Accélérateur Linéaire – ORSAY CNRS/IN2P3 FPCP-2010 Turin, 25 th May, 2010.
V.Tisserand, LAPP-Annecy (IN 2 P 3 /France), on behalf of the B A B AR collaboration. Aachen (Germany), July 17 th -23 rd Charmed B hadrons with.
1 outline ● Part I: some issues in experimental b physics ● why study b quarks? ● what does it take? ● Part II: LHCb experiment ● Part III: LHCb first.
D0 mixing and charm CP violation
Present status of Charm Measurements
Review of b  s l+ l- and B0  l+ l- Decays
Reaching for  (present and future)
Search for b → u transitions in B+ → {Kpp0}DK+
WGV Summary g from B to charm decays
LHCb Physics Program On behalf of LHCb collaboration M.N Minard (LAPP)
Patrick Robbe, LAL Orsay, 20 Nov 2013
CP VIOLATION (B-factories)
Measurement of the phase of Bs mixing with Bs ϕϕ
Heavy Flavor Results from CMS
γ determination from tree decays (B→DK) with LHCb
Radiative and electroweak penguin processes in exclusive B decays
Max Baak, NIKHEF on behalf of the BABAR and BELLE Collaborations
CKM Status In this lecture, we study the results summarized in this plot. November 17, 2018 Sridhara Dasu, CKM Status.
Charm Mixing, CPV and Rare D0 decays at BaBar
ВД в эксперименте по измерению масс
Measurements of g and sin(2b+g ) in BaBar
CP violation in the charm and beauty systems at LHCb
Rare B decays at LHCb Michela Lenzi INFN Firenze
BESIII 粲介子的强子衰变 周晓康 中国科学技术大学 BESIII 粲介(重)子物理研讨会.
B  at B-factories Guglielmo De Nardo Universita’ and INFN Napoli
Hadronic Substructure & Dalitz Analyses at CLEO
D0 Mixing and CP Violation from Belle
B physics prospects at LHCb
LHCb Strategies for g from B→DK
How charm data may help for φ3 measurement at B-factories
CP violation in Bs→ff and Bs → K*0K*0
Potential for precise Unitarity Triangle angles measurements in LHC
B Physics at the LHC Neville Harnew University of Oxford.
LHCb Rare Decays Status
LHCb Rare Decays Status
NP in CP-violation at LHC(b)
f3 measurements by Belle
B DK strategies in LHCb (part II)
B-physics at the LHC Beyond 2010, february
Study of the suppressed decay B-DK- and B-D(*)CPK- decays at Belle
Measurement of f3 using Dalitz plot analysis of B+ D(*)K(*)+ by Belle
Presentation transcript:

LHCb prospects in flavour physics and CP violation Stephan Eisenhardt, University of Edinburgh On behalf of the LHCb experiment Introduction – LHCb Physics Programme fs: BS  J/Y f g: B±  DK± rare decays: BS  mm, B0K*0mm Conclusions EPS 2007, Manchester, 20.07.2007

LHCb Physics Programme  g ~Vub* ~Vtd ~Vts g b a ~Vub* ~Vtd ~Vcb g-2 g and g Rare decays - very sensitive to NP Radiative penguin e.g. Bd  K* g, Bs  f g Electroweak penguin e.g. Bd  K*0 m+m- Gluonic penguin e.g. Bs  ff, Bd  fKs Rare loop diagram e.g. Bs m+m- B production, Bc, b-baryon physics Charm decays Tau Lepton flavour violation EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

_ fS: BsJ/Yf bccs  fS = fSSM+fSNP BS mixing phase is very small in SM: fS = -0.037 ± 0.002 rad (BsJ/Yf : fS=-2c) not yet measured could be much larger if New Physics adds to BS0-BS0 transitions BS0f BS0BS0f +NP? measure time-dependent asymmetry in decay rates: need flavour tagging need very good proper time resolution to resolve BS0-BS0 oscillations need angular analysis to separate CP-even and CP-odd contributions  fS = fSSM+fSNP EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

fS: BsJ/Yf wtag, s(t) fS = 0.2 = 5SM full LHCb MC Flavour tagging: Tagging efficiency: etag – probability that tagging procedure gives an answer Wrong tag fraction: wtag – probability for the answer to be wrong Dilution of the observed asymmetry: D = 1 – 2wtag Effective tagging efficiency: eeff = etagD2 = 7.08 ± 0.23 % fS = 0.2 = 5SM + wrong tag fraction + proper-time resolution + acceptance BS0 tag full LHCb MC Proper time resolution: dependent on reconstruction errors of final states LHCb: most channels have proper-time resolution ~ 40fs BsJ/Yf: s(t) = 36.0 fs EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

fS: BsJ/Yf angular analysis BSJ/Y(l+l-)f(K+K-): golden channel theoretically clean experimentally easy: mm trigger and 4 charged tracks LHCb: yield in 2 fb-1: 131k, B/S=0.12 angular analysis: disentangle mixture of CP-even (hf=-1, A0, A||) and CP odd (hf=+1, A) 1-angle analysis: qtr wrong-tag fraction: wtag from control sample BSDSp needs external DmS gives: fS, DGS 3-angle analysis: qtr, ftr, qf better separation power indication: wtag and DmS can be measured as well (to lower accuracy wrt. external measurements) total CP even CP odd flat background EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

fS: BsJ/Yf sensitivity BSJ/Y(l+l-)f(K+K-): for 1-angle analysis: sensitivity for s(fS) = 0.023 rad, s(DGS/GS) = 0.0092 2 fb-1 = “1 yr of LHCb”: Add other CP-even final states: combined relative weight: only 13% total sensitivity for 2 fb-1: s(fS) = 0.021 rad Constraining New Physics in BS mixing from fS measurement: Parameterise NP with mixing amplitude ASNP/ASSM and phase fSNP ASNP/ASSM fSNP hep-ph/200604112 >90% CL >32% CL >5% CL CDF: DmS 04/2006 included ASNP/ASSM fSNP After LHCb measurement of fS with s(fS)=±0.1 (~0.2 fb-1) EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

g: B±D0K± ADS method Charged B decays to D0 or D0 and K: D0 and D0 can both decay into K-p+ (and K+p-): Four decay rates: two favoured with small interferences (opposite-sign p) two suppressed with large interferences (like-sign p) Counting experiment: no flavour tagging, no proper time analysis Only through D0 mixing sensitive to NP 3 relative decay rates vs. 5 parameters: rB, rD, dB, dD, g rD well measured; but dD poorly constraint by CLEO-c (Dcos dD ~ 20%) Atwood, Dunietz and Soni, Phys. Rev. Lett. 78, 3257 (1997). rB = 0.075±0.030 colour favoured colour suppressed Amplitude ratio rD = 0.060±0.003 doubly Cabibbo suppressed Cabibbo favoured EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

g: B±D0K± ADS+GLW method Improvements: add D0 decay mode: D0Kppp adds: 3 observables, 1 unknown strong phase dK3p, 1 well measured rel. decay rate rDK3p add D0 decay mode into CP eigenstates: D0KK/pp (GLW method) adds: 1 observable, 0 unknown Simultaneous fit to all B±D0K± decays (ADS+GLW) LHCb performance: Charged B decays: Neutral B decays: (same method can be applied) Gronau, London, Wyler, PLB. 253, 483 (1991), PLB 265, 172 (1991). Expected event yield / 2fb-1 B/S B-D0[Kp,K3p]K- + c.c. 112k B-D0[Kp,K3p]K- + c.c. 1.4k B-D0CP[KK,pp]K- + c.c. 7.6k 0.6 ~3 ~2 Sensitivity with 2 fb-1: s(g) ~ 5°-15° (depends on strong phase dD) Expected event yield / 2fb-1 B/S B0D0[K+p-]K*0 + c.c. 3.4k B0D0[K-p+]K*0 + c.c. 0.5k B0D0CP[KK,pp]K*0 + c.c. 0.6k <0.3 <1.7 <1.4 Sensitivity with 2 fb-1: s(g) ~ 7°-10° (depends on strong phase dD) EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

g: B±D0K± GGSZ method When D0 decays into a 3- or 4-particle CP Eigenmode: no significant CP violation in D decays D decay model: ‘exclusive’ point-by-point in phase space or ‘inclusive’ (integrating) measure magnitudes (rD) from Dflavour tags phases (dD) from DCP tags choice: D0KS0p+p- (or KS0K+K-)  phase space = Dalitz plot invariant mass: m±= KS0p± Dalitz amplitudes: A(D0KS0p+p-) = f(m+2,m-2) A(D0KS0p-p+) = f(m-2,m+2) B decay amplitudes: A(B-(KSp+p-)DK-)  f(m-2,m+2) + f(m+2,m-2) rB ei(dB-g) A(B+(KSp+p-)DK+)  f(m-2,m+2) + f(m-2,m+2) rB ei(dB+g) With known f : fit simultaneously for: rB, dB, g rB & dB depend on mode: B-DCPK- B-D*CPK- B-DCPK*- Giri, Grossman, Soffer, Zupan, PRD 68, 050418 (2003). many resonances needed m+2 [GeV2/C4] m-2 [GeV2/C4] D0 EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

current Dalitz uncertainty 11% g: B±D0K± GGSZ method Select B decays: “Cartesian parameters”: to better disentangle parameters in fit (x±, y±) = (rB cos (dB±g), rB sin (dB±g)) B± Dalitz plot distribution depends on x±, y± Fit (x±, y±) Dalitz plots: Extract g: BaBar: g = (92 ± 41 ± 11 ± 12)° Belle: f3 = (53 +15 -18 ± 3 ± 9)° LHCb performance: 2g BaBar: 232M BB event yield N(DK+) N(DK-) B±D0(K-p+)K± B±D0CP+(K-K+)K± B±D0CP+(p-p+)K± B±D0CP-(K0Sp0)K± B±D0CP-(K0Sf)K± B±D0CP-(K0Sw)K± 649±29 26±9.. 18±7.. 39±9.. 15±5.. 25±7.. 611±28 70±10 17±7.. 42±9.. 13±4.. 14±6.. x y PRD 73 051105(R) (2006). Sensitivity with 2 fb-1: s(g) ~ 8° current Dalitz uncertainty 11% (to be improved) Expected event yield / 2fb-1 B-(KSp+p-)DK- + c.c. 5k 0.2 < B/S < 1.0 (90% CL) EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

Very rare B decays: BSm+m- Very rare loop decay, sensitive to New Physics: BR 3.4±0.410–9 in SM, can be strongly enhanced in SUSY Current limit from CDF+D0 is: 1 fb–1: 7510–9 (90% CL ) CMSSM: prediction of BR(BSm+m-) wrt. gaugino mass m1/2 ~ a few 10-9 – 10-7: much higher than SM Main issue is background rejection With limited MC statistics, indication that main background is bX, bX SM (C)MSSM ? ~tan6b or ~tan4b 10-9 10-8 10-7 m1/2 [GeV] BR(BSmm) hint from m: g-2 EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

BSm+m- sensitivity Limit at 90% C.L. 5 3 1 year of LHCb 0.05 fb–1  overtake CDF+D0 0.5 fb–1  exclude BR values down to SM Limit at 90% C.L. (only bkg is observed) Integrated Luminosity (fb-1) Uncertainty in background prediction Expected final CDF+D0 Limit BR (x10–9) SM prediction LHCb Sensitivity (signal+bkg is observed) Integrated Luminosity (fb-1) 5 3 BR (x10–9) SM prediction 2 fb–1  3 evidence of SM signal 10 fb–1  >5 observation of SM signal 1 year of LHCb EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

Rare B decays: B0K*0m+m- Suppressed by loop decay: BR ~1.210–6 Forward-Backward Asymmetry AFB(s) in the  rest-frame is sensitive probe of New Physics LHCb sensitivity: 7.7k signal events/2fb–1 (~1yr LHCb) Bbb/S = 0.4 ± 0.1 S0= S(AFB(s)=0): s(S0) = ±0.52 GeV2  determine ratio of Wilson coefficients C7eff/C9eff with 13% stat error (SM) s = (m)2 [GeV2] AFB(s), theory position of S0 integral + – K* B0 q LHCb: 2 fb–1, fast MC S0=4.0 GeV2 AFB(s) s = (m)2 [GeV2] EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

B0K*0m+m- transversity angles Transversity amplitudes: LHCb study for 2 fb-1 Matias hep-ph/0612166. Longitudinal polarisation FL Asymmetry AT(2) SUSY 1 SM NLO SUSY II EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

LHCb Status LHCb Construction on Schedule Muon Calorimeters RICH2 Trackers Magnet RICH1 VELO EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt

Conclusions BSJ/Y(l+l-)f(K+K-): sensitivity on fS with 2 fb-1: s(fS) = ±0.023 rad significant coverage of phase space for NP with 0.2 fb-1 B±D0K± : clean channel, different methods explored sensitivity on g with 2 fb-1: s(g) ~ 5°-15° rare decays : big potential for search for NP BSm+m- : with 2 fb-1  3 evidence of SM signal B0K*0m+m- : with 2 fb-1  s(S0)= ±0.52 GeV2 LHCb waiting for physics data in 2008 many new and exciting physics results in flavour physics (and NP?) stay tuned! EPS 2007, Manchester, 20.07.2007 Stephan Eisenhardt