Lecture 3: Linear Regression (with One Variable)
Supervised Learning: Regression Right answers are given for inputs Regression refers to predicting continuous valued output (e.g. price)
Notations
Learning Process
Hypothesis Representation
Hypothesis Representation
Finding Parameters
Cost Function
Cost Function Intuition
Cost Function Intuition (Cont)
Cost Function Intuition (Cont)
Cost Function Intuition (Cont)
Cost Function Intuition (Cont)
Cost Function Intuition (Cont) cc cc
Cost Function Intuition (Cont) cc cc cc
Cost Function Intuition (Cont) cc cc cc cc cc cc cc
Cost Function Intuition (Cont) cc cc cc cc cc cc cc = 1
Cost Function Intuition 2
Cost Function Intuition 2
Cost Function Intuition 2 (Cont)
Cost Function Intuition 2 (Cont)
Cost Function Intuition 2 (Cont)
Cost Function Intuition 2 (Cont)