Activités du groupe LC Détecteur au LAPP

Slides:



Advertisements
Similar presentations
RD S. Aune CEA/IRFU Micromegas Bulk for CLAS12 vertex tracker.
Advertisements

Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
Micromegas detectors for the CLAS12 central tracker Brahim Moreno (for the Saclay group) CLAS12 central detector meeting : 2 december 2009 Cea Saclay CERN.
Thursday, November 7th ECFA meeting - Valencia - A.-M. Magnan 1 CALICE Summary of 2006 testbeam for the ECAL Anne-Marie MAGNAN Imperial College London.
Micromegas for a DHCAL LAPP, Annecy Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise Espagilière.
Sept. 24, Status of GEM DHCAL Jae Yu For GEM-TGEM/DHCAL Group Sept. 24, 2010 CALICE Collaboration Meeting Univ. Hassan II, Casablanca Introduction.
Development of Particle Flow Calorimetry José Repond Argonne National Laboratory DPF meeting, Providence, RI August 8 – 13, 2011.
PMF: front end board for the ATLAS Luminometer ALFA TWEPP 2008 – 19 th September 2008 Parallel Session B6 – Programmable logic, boards, crates and systems.
SiW ECAL Technological Prototype Test beam results Thibault Frisson (LAL, Orsay) on behalf of the CALICE collaboration.
ATLAS Liquid Argon Calorimeter Monitoring & Data Quality Jessica Levêque Centre de Physique des Particules de Marseille ATLAS Liquid Argon Calorimeter.
Catherine Adloff16 June 2009 CALICE Technical Board 1 DHCAL-MICROMEGAS Yannis KARYOTAKIS For the LAPP group.
M. Chefdeville LAPP, Annecy, France. Introduction  Motivations for a Digital hadronic calorimeter Count hits instead of measuring energy deposits Reduce.
LAPP/Demokritos H4 setup Sampling Calorimetry with Resistive Anode Micromegas (SCREAM) Theodoros Geralis NCSR Demokritos RD51 mini week, 8 – 11 December.
Activités R&D du groupe LC Détecteur au LAPP R. GAGLIONE pour C. ADLOFF 7 Décembre 2011.
1 Semi-Digital Hadronic CALorimeter Prototype planning CIEMAT, Gent, IPNL, LAL, LAPP, LLN, LLR, LPC, Protvino, Tsinghua, Tunis I.Laktineh.
The DHCAL Data Analysis José Repond CALICE Meeting, Prague, September 10 – 12, 2007.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
1 MICROMEGAS for Imaging Hadronic Calorimetry at Linear Colliders Catherine ADLOFF on behalf of the CALICE collaboration.
Update on the Triple GEM Detectors for Muon Tomography K. Gnanvo, M. Hohlmann, L. Grasso, A. Quintero Florida Institute of Technology, Melbourne, FL.
CALICE Tungsten HCAL Prototype status Erika Garutti Wolfgang Klempt Erik van der Kraaij CERN LCD International Workshop on Linear Colliders 2010, October.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
MicroMegas for DHCAL Status and activities at LAPP Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise.
European DHCAL development European DHCAL development CIEMAT,IPNL,LAL, LAPP,LLR, PROTVINO, SACLAY CIEMAT,IPNL,LAL, LAPP,LLR, PROTVINO, SACLAY Status :
Julie Prast, Calice Electronics Meeting at LAL, June 2008 Status of the DHCAL DIF Detector InterFace Board Sébastien Cap, Julie Prast, Guillaume Vouters.
1 Status of the MICROMEGAS semi-digital HCAL M. Chefdeville, LAPP LC Detector group, Annecy CALICE meeting, CERN, 21/05/2011.
RD51 GEM Telescope: results from June 2010 test beam and work in progress Matteo Alfonsi on behalf of CERN GDD group and Siena/PISA INFN group.
NoV. 11, 2009 WP meeting 94 1 D. Attié, P. Colas, E. Ferrer-Ribas, A. Giganon, I. Giomataris, F. Jeanneau, P. Shune, M. Titov, W. Wang, S. Wu RD51 Collaboration.
14th january 2010 Actual Micromegas USB DAQ ASU and DIF
Status of the MICROMEGAS semi-DHCAL M. Chefdeville LAPP, Annecy, France LCWS, 27 th March 2010, Beijing 1.
Catherine Adloff28 Jan 2008 SiD Collaboration Meeting 1 DHCAL and MICROMEGAS at LAPP Catherine Adloff Franck Cadoux Sébastien Cap Cyril Drancourt Ambroise.
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
14 jan 2010 CALICE/EUDET FEE status C. de LA TAILLE.
Energy Reconstruction in the CALICE Fe-AHCal in Analog and Digital Mode Fe-AHCal testbeam CERN 2007 Coralie Neubüser CALICE Collaboration meeting Argonne,
SDHCAL. outline  SDHCAL concept, validation and construction  Test Beam and technological prototype performance  Perspectives and Conclusion  SDHCAL.
1 Micromegas for sampling calorimetry Chronology & people  Initiated by LAPP LC-group in 2006 (C. Adloff, M. Chefdeville, Y. Karyotakis, I. Koletsou)
LAPP Introduction Catherine ADLOFF for Yannis KARYOTAKIS.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
CALICE, Shinshu, March Update on Micromegas TB analysis Linear Collider group, LAPP, Annecy CALICE collaboration meeting 5-7 March 2012, Shinshu,
W-DHCAL Digitization T. Frisson, C. Grefe (CERN) CALICE Collaboration Meeting at Argonne.
1 Micromegas for imaging calorimetry XVth International Conference on Calorimetry in High Energy Physics June , Santa Fe M. Chefdeville, CNRS/IN2P3/LAPP,
Thick-GEM sampling element for DHCAL: First beam tests & more
New MPGDs at CERN PCB Workshop
Beam test of Silicon-Tungsten Calorimeter Prototype
Test Beam Request for the Semi-Digital Hadronic Calorimeter
The European DHCAL status
M. Chefdeville LAPP, Annecy RD51/WG2, CERN, 29/04/2009
The 1m2 Micromegas prototype for hadronic calorimetry
CEPC 数字强子量能器读出电子学预研进展
R&D advances on Micromegas for a semi-DHCAL
A Digital Hadron Calorimeter Resistive Plate Chambers
Saikat Biswas, A. Abuhoza, U. Frankenfeld, C. Garabatos,
Tests of a MM octant prototype towards a Micromegas TPC Polarimeter
DHCAL and MICROMEGAS at LAPP
Status of the DHCAL DIF Detector InterFace Board
(My personal) CALICE Report
The DHCAL: an overview José Repond Argonne National Laboratory
Status of GEM DHCAL Andy White RD51 Collaboration Meeting CERN
Tao Hu, Jianbei Liu, Haijun Yang, Boxiang Yu For the CEPC-Calo Group
MicroMegas DHCAL : Résultat des tests en faisceau et simulation
Study of energy shower profile and 1m3 energy resolution Jan Blaha Laboratoire d'Annecy-le-Vieux de Physique des Particules MicroMegas Physics.
Status of the MICROMEGAS semi-digital HCAL
ScECAL+AHCAL+TCMT Combined Beam FNAL
   Calorimetry et al.    SUMMARY 12 contributions Tile HCAL
STATUS OF SKIROC and ECAL FE PCB
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
Rick Salcido Northern Illinois University For CALICE Collaboration
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Pre-installation Tests of the LHCb Muon Chambers
11th Pisa meeting on advanced detectors
MICROMEGAS DHCAL Intro
Presentation transcript:

Activités du groupe LC Détecteur au LAPP C. ADLOFF 17 Octobre 2011

Evolution des activités « Simu » HCAL extensive studies with analog or digital/semi-digital readout : J. Blaha Optimization of multi-thresholds for better resolution and linearity (continued by D. Girard) Optimization of the SiD HCAL design Projective and tailed geometries Impact of the cracks on HCAL performance Energy containment and leakage corrections 2 Notes CALICE-SiD-LAPP tech note Impact of dead zones on the response of a hadron calorimeter with projective and non-projective geometry Optimization of the hadron calorimeter geometry for the SiD detector

Evolution des activités « Simu » CLIC Detector effort  CLIC CDR Heavy Slepton analysis : J.J. Blaising mSUGRA parameters for SUSY benchmarks Ex: e⁺+e⁻ → μ̃R⁺+μ̃̄R ˉ → χ̃⁰₁ μ⁺ + χ̃⁰₁ μˉ 2L topology Ex: e⁺+e⁻ → ẽL ⁺ + ẽL ˉ→ χ̃⁰₂ e⁺ + χ̃⁰₂ eˉ → χ̃⁰₁ h⁰ e⁺ + χ̃⁰₁ h⁰ eˉ 2L 4J topology full simulation and reconstruction, with overlay of beam-beam induced background: ->h, assuming ∫L=2 ab⁻¹. LCD-note-2011-018 et LCWS2011

Evolution des activités « Simu » Top et RHN : partie physique de la thèse A. Espargilière Recherche d’un dans avec @CLIC Sélection d’événements t¯t@CLIC Efficacité 68.6%, Pureté 72.9%

Evolution des activités « Simu » Top et RHN : Extraction du signal Z′ d’un lot t¯ Observabilité du Z′ si mZ′ ≤ 500GeV Méthode de mesure d’une particule lourde invisible Résolution sur mZ′ < 10%, optimum vers mZ′ = 300GeV/c2

Evolution des activités R&D New 1m2 chamber Improved mechanical design New readout electronics August 2011 beam tests Preliminary results October 2011 beam tests 2007-09 2010 2011 GASSIPLEX (HARDROC1) (DIRAC) HARDROC2 HARDROC2b MICROROC 6x16 cm2 (8x8 cm2) (8x32 cm2) 32x48 cm2 1x1 m2 32x48 cm2 1x1 m2 Shaping 1.2 μs 97 % efficiency < 1.12 multiplicity Shaping 20 ns 50 % efficiency < 1.06 multiplicity Shaping 100-200 ns 98 % efficiency < 1.1 multiplicity

Improved Mechanical Design Gas tightness made by ASU and mask one side, drift plate on top side Base plate screwed instead of glued Access to ASIC side of ASUs Eventually get rid of Fe baseplate For WHCAL prototype: less steel For ILC steel HCAL : improve absorber stiffness (+2mm for the absorber plate) ASU mask thickness reduced from 3 to 2 mm → Thinner chamber (7mm instead of 8 mm active thickness) Easier access to DIF connectors and LV & HV patch panel when chambers are inserted inside structures

New Readout Electronics New readout ASIC : MICROROC New PCB routing Improved EMC : minimize detector/digital signals X-talk Chip bypass correctly routed Analog readout Improved PCB spark protection network Faster More compact

New Readout Electronics MICROROC: developed in collaboration between LAPP & LAL/Omega Details in R. Gaglione previous talks Feb, May From HARDROC2 to MICROROC: Same digital part : pin-to-pin compatibility Current preamp replaced by charge preamp Additional spark protections inside silicon Fast shaper (~20ns) replaced by 2 tunable shapers (30-200 ns) 8 bit preamp gain corrections replaced by 4-bits pedestal corrections MICROROC Status: 341 chips produced 339 tested, 91,4 % yield (enough to equip two 1m2 prototypes plus 1 ASU for laboratory tests) 13 ASUs equipped and calibrated Chip threshold + channel offset → virtually 1 threshold / channel CALICE Meeting, Heidelberg

MICROROC ASU tests in test box Study of chamber properties with an 55Fe X-ray source Cosmics :event display for the vertical chamber position

MICROROC 1m2 assembly June 2011

August 2011 Beam Tests Preliminary tests Pedestal alignments (cf Maximilien previous talk) Cosmics at LAPP in July Beam tests 3rd to 22nd August 2011 at CERN SPS H4 3rd to 9th August : CALICE the most fruitful period 9th to 22nd August : RD51 with 3 other users

August 2011 Beam Tests Setup 3 Scintillators: for triggering Pad telescope LAPP 3 analog readout MICROMEGAS 6x16 cm2 Pads size: 1cm2 Conversion gap: 3 mm Strip telescope NCSR Demokritos, National Technical University of Athens 3 analog readout MICROMEGAS 2.4x2.4 cm2 Strips length: 10 cm Strip pitch: 250 m Conversion gap: 7 mm 1m2 MICROMEGAS Chamber with 144 MICROROCs Gas used : 95% Ar, 2% isobutane and 3% CF4  not flammable.

August 2011 Beam Tests Acquisition telescopes 1m2 MICROMEGAS: VME ADC + Sequencer CENTAURE DAQ 1m2 MICROMEGAS: 3 (interDIF + DIF) LAPP LabView DAQ Hardware Synchronization with busy handshake between VME sequencer and CCC : acquisition rate up to 200 Hz

August 2011 Beam Tests

August 2011 Beam Tests The first beam profile: 4/8/11 at 8pm  fast and efficient start Muon Beam Telescope pad chambers Telescopes and scintillators structure rotated by 90 to increase coincidence events Hits in coincidence with triggers from scintillators

August 2011 Beam Tests Beams During more than 2 weeks: Data on disk Muons: beam core on 3x9 pads Pions: high intensity beam and focused on 2 pads (RD51 users) During more than 2 weeks: Less than 10 HV trips on the m2 even in high intensity pion beam No MICROROC damage due to sparks Data on disk Drift voltage scan (405V to 570V) Mesh voltage scan (300V to 420V) for different shaping time (75ns, 115ns, 150ns 200ns) Position scan:  20 positions Threshold scan Analog readout (after hold adjustment) Different angle of beam incidence (0, 30, 60) Pion showers for different mesh voltage and thresholds. MICROROC tests: Ramfull mode With/without one stage of the preamplifier.

Very preliminary results Mesh voltage scan (300V to 420V) for different shaping time (75ns, 115ns, 150ns, 200ns) DAC0 threshold ~ 0.7 fC Muon Beam Standard settings : Vmesh = 390V Vdrift=480V

Very preliminary results Mesh voltage scan (300V to 420V) for different shaping time (75ns, 115ns, 150ns, 200ns) DAC0 threshold ~ 0.7 fC Muon Beam

Very preliminary results Threshold scan Muon Beam 2008 beam tests (analog readout, threshold cut offline)

Very preliminary results Analog readout Pion Beam DAC0 = 0.7 fC DAC1 = 20 fC = 1 MIP DAC2 = 100 fC = 5 MIP ADC counts  Allows to fix and monitor the digital thresholds!

Very preliminary results Different angle of beam incidence (0, 30, 60) Muon Beam 0 30 60

Very preliminary results Pion showers for different mesh voltages and thresholds. 20 cm iron block Medium and high thresholds adjusted for the different Vmesh voltages.

Very preliminary results Pion showers for different mesh voltages and thresholds. 20 cm iron block Medium and high thresholds adjusted for the different Vmesh voltages.

Very preliminary results Pion showers for different mesh voltages and thresholds. 20 cm iron block Medium and high thresholds adjusted for the different Vmesh voltages.

Very preliminary results MICROROC tests in Ramfull mode Data taken also outside the spill 10 noisy channels out of 9216 (6 are cut in hardware, 4 in software) Threshold about 0.7 fC from pedestal Muon Beam Ramfull mode ok All data from detector. No time cut applied.  Very quiet Detector!

October 2011 Beam Tests Improve setup First test with CALICE DAQv2 at LAPP on September the 28th ! Succeed to configure MICROROC chip and get data from MICROROC and HR boards simultaneously on the September 30 Beam tests 3rd to 12th October 2011 at CERN SPS H8

October 2011 Beam Tests Ready for insertion in CALICE-DAQv2 on the 6th Very unstable DAQv2 untill 10th late night First insertion in CALICE-DAQv2 on the 11th  no time to debug, no data taken Waiting for insertion in the DAQv2: Improve our knowledge on noisy channels HV SCAN 80 GeV/c pions ~ 50k evts 60 GeV/c pions ~600k evts 100 GeV/c pions ~130k evts 120 GeV/c pions ~120k evts 150 GeV/c pions ~ 70k evts 180 GeV/c pions ~ 60k evts

Conclusion pour 2011 MICROMEGAS m2 Bulk process with embedded chips: ok Mechanics : ok Tests beam results Electronic Readout: ok Nearly no Vmesh trips. Very quiet detector Performances compatible with HCAL requirements MICROMEGAS Framework : great tool for analysis A second chamber is constructed CLIC CDR Ambroise Espargilière thesis 2011 : goals accessible within the funding allocated are achieved

Le groupe FTE Phys Méca Elect Info TOT 2006 0.8 0.6 0.5 0.1 2.0 2007 0.7 0.4 1.8 2008 1.9 2.95 (1) 5.55 2009 4.6 (3) 5.2 12.1 (4) 2010 1.63 3.82 (0.98) 0.78 10.83 (3.98) 2011 1.42 3.3 (0.93) 0.73 10.05 (3.93) 1 doctorant (contribution des non permanents)

Le groupe en 2011 Physicists C. Adloff, J. Blaha, J.-J. Blaising, M. Chefdeville, A. Espargilière (PhD), Y. Karyotakis Electronics Engineers and Technicians A. Dalmaz (100%), C. Drancourt (90%) , R. Gaglione (42%), J. Prast (5%), G. Vouters (93%) Mechanics Engineer and Technicians N. Geffroy (28%), F. Peltier (90%), J.P Baud (24%) Software J. Jacquemier (73%)

Budget 2011 Alloué 20k FP 17k MP 18k CERN Report 2010 27k Etat au 14.10.2011 (nouveau : outillages méca et matériel info à la charge des groupes) 167 FP 428 MP ? CERN (pas d’accès au compte)

Future Larger production could be launched in 2012 Funding for studies of bulk-MICROMEGAS with resistive layer : ANR SPLAM 1 postdoc + test prototypes Continue DAQv2 developments for CALICE Continue effort for CLIC detector : J.J. Blaising CLIC summary document for accelerator, physics and detectors preparation of a common Linear Collider statement from ILC and CLIC for the European Strategy update in 2013

Demande 2012 Mission 50k Conférences, réunions de collaboration 40k Tests faisceau 10k    FP 162k Construction de 5 plans MICROMEGAS de 1 m2 102k    5 plans de MICROMEGAS = 100k   Tests des chips MICROROC = 2k R&D MICROMEGAS 30k   bulk-MICROMEGAS oriente protection contre les sparks = 10k   Chip CLIC = 20k Services (BT, HT, Gas) pour 10 m2  30k

Aknowledegments LAPP LC Detector group Collaborators Catherine Adloff Jan Blaha Jean-Jacques Blaising Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise Espargilière Renaud Gaglione Damien Girard Nicolas Geffroy Jean Jacquemier Yannis Karyotakis Fabrice Peltier Julie Prast Guillaume Vouters Collaborators David Attié Enrique Calvo Alamillo Khaled Belkadhi Vincent Boudry Paul Colas Christophe Combaret Rémi Cornat Paul Dauncey Franck Gastaldi Mary-Cruz Fouz Iglesias Wolfgang Klempt Lucie Linsen Rui de Oliveira Dieter Schlatter Nathalie Seguin Christophe de la Taille Stergios Tsigaridas Yorgos Tsipolitis Wenxing Wang

Back up

Slepton at CLIC (LCWS 2011) For μ± and e± final states, Pt > 4 GeV cut remove γγ->h background preserving the energy resolution. For e±4J final states, detector timing information must be included to remove γγ->h background, preserve the lepton energy resolution and the di-jet mass resolution. It requires detector time stamping capability of ~ 1 nsec and readout window ~ 10 nsec. With 2 ab¯¹ the μ̃R , ẽR, ẽL and ν̃e cross section are determined with a relative statistical uncertainty of ~ 2.6% , 0.7%, 8% and 2.4%. The μ̃R , ẽR, ν̃e, χ̃⁰₁ and χ̃±₁ masses are measured with a relative statistical accuracy of~ 0.6%, 0.3%, 0.4%, 1% and 0.6% Knowledge of the luminosity spectrum is essential for the mass fit. To establish sleptons chirality requires beam polarization To contribute to EU strategy document, ECM~ 1.5 TeV, new benckmark

Slepton - CLIC CDR