Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)

Slides:



Advertisements
Similar presentations
Cold dust in the Galactic halo: first detection of dust emission in a high-velocity cloud : Francois Boulanger et Marc-Antoine Miville-Deschênes Miville.
Advertisements

Feedback: in the form of outflow. AGN driven outflow.
X Y i M82 Blue: Chandra Red: Spitzer Green & Orange: Hubble Face-on i = 0 Edge-on i = 90 Absorption-line probes of the prevalence and properties of outflows.
X-Ray Spectroscopy of diffuse Galactic Interstellar Matter with Chandra: The Si K Edge Structure in Galactic Bulge LMXBs Norbert S. Schulz Massachusetts.
RGS spectroscopy of the Crab nebula Jelle S. Kaastra Cor de Vries, Elisa Costantini, Jan-Willem den Herder SRON.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
Spectral modeling and diagnostics in various astrophysical environments Jelle Kaastra SRON.
The Abundance of Free Oxygen Atoms in the Local ISM from Absorption Lines Edward B. Jenkins Princeton University Observatory.
General Astronomy The Interstellar Medium Credits: Much of this slideset is modified from lectures by Dr. Peter Newbury (UBC)
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
Searching for the large-scale hot gaseous Galactic halo --Observations confront theories Yangsen Yao in collaboration with Michael A. Nowak Q. Daniel Wang.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
X-ray Absorption Spectroscopy of the Multi-Phase Interstellar Medium: O & Ne Abundances Astro-ph: Yangsen Yao Q.Daniel Wang.
Clicker Question: The HR diagram is a plot of stellar A: mass vs diameter. B: luminosity vs temperature C: mass vs luminosity D: temperature vs diameter.
Missing baryons and missing metals in galaxies: clues from the Milky Way Smita Mathur The Ohio State University With Anjali Gupta, Yair Krongold, Fabrizio.
Building the Hertzsprung-Russell (H-R) Diagram Use the worksheets passed out in class.
OBSERVATIONS OF INTERSTELLAR HYDROGEN FLUORIDE AND HYDROGEN CHLORIDE IN THE GALAXY Raquel R. Monje Darek C. Lis, Thomas Phillips, Paul F. Goldsmith Martin.
When  meets IR the clouds hiding behind the dust & cosmic rays Isabelle Grenier Jean-Marc Casandjian Régis Terrier AIM, Service d’Astrophysique, CEA Saclay.
Accurate measurement of interstellar hydrogen as the target of hadronic gamma rays Yasuo Fukui Nagoya University Southern Observatories CTA meeting April.
Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
X-ray Spectroscopy of Cool & Warm Absorbers With Chandra: From Oxygen to iron X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA Norbert S. Schulz.
IAU Coll Shanghai 2005 The Dust Obscuration bias in Damped Ly  systems Giovanni Vladilo Osservatorio Astronomico di Trieste Istituto Nazionale.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
Charge Exchange in Cygnus Loop R. S. Cumbee et al Satoru Katsuda et al Zhang Ningxiao.
The X-ray side of the absorption by interstellar dust
Quiz 3 Briefly explain how a low-mass star becomes hot enough to settle on the main-sequence. Describe what is solar weather and list two ways in which.
X-ray Absorption and Scattering by Interstellar Dust: the XMM view Elisa Costantini Max Planck Institute for extraterrestrial Physics (MPE) P. Predehl,
Astronomy 1020-H Stellar Astronomy Spring_2015 Day-32.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Lecture 30: The Milky Way. topics: structure of our Galaxy structure of our Galaxy components of our Galaxy (stars and gas) components of our Galaxy (stars.
Analysis of HST/STIS absorption line spectra for Perseus Molecular Cloud Sightlines Authors: C. Church (Harvey Mudd College), B. Penprase (Pomona College),
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
AST101 Lecture 20 The Parts of the Galaxy. Shape of the Galaxy.
Chapter 11 The Interstellar Medium
ISM X-ray Astrophysics Randall K. Smith Chandra X-ray Center.
The Chandra view of Mrk 279 Elisa Costantini SRON, National Institute for Space Research Astronomical Institute Utrecht.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
A New View of Interstellar Dust as Revealed by Recent Observations Takashi Onaka (University of Tokyo) ASTRO-F®ISASSpitzer®NASA.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
Astronomy 1020 Stellar Astronomy Spring_2016 Day-27.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
Netherlands Organisation for Scientific Research Probing interstellar dust through X-ray spectroscopy C. Pinto *, J. S. Kaastra * †, E. Costantini *, F.
Netherlands Organisation for Scientific Research High-resolution X-ray spectroscopy of the chemical and physical structure of the Interstellar Medium C.
The Interstellar Medium (ISM)
Jesper Rasmussen (Univ. of Birmingham)
Presolar Grains & Meteorites
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
The Galactic Interstellar Halo
Star Formation Nucleosynthesis in Stars
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
Jill Bechtold (University of Arizona)
(as Main Sequence Stars)?
WHERE STARS ARE BORN.
Interstellar Ice Formation on Dust Grains
Isotopic abundances of CR sources
The ISM and Stellar Birth
Nebula.
On Deuterated Polycyclic Aromatic Hydrocarbons in Space
The (Un)True Deuterium Abundance in the Galactic Disk
The Interstellar Medium
Mikako Matsuura National Astronomical Observatory of Japan
The X-ray Morphology and Spectra of Galactic Disks
Spatial Distribution of Molecules in Damped Lya Clouds
Presentation transcript:

Gas and dust in the ISM towards the Center of the Galaxy through X-ray Spectroscopy Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2) (1) SRON – Netherlands Institute for Space Research (2) Astronomical Institute, Utrecht University

Interstellar medium (ISM) and Galactic life cycle Crucial role in the evolution of the entire Galaxy Stellar evolution Heavy elements ISM Metallicity gradient towards the G. center Evolution of the Galaxy

Interstellar medium: 3-phase structure Chemical composition close to Solar abundances

X-ray Spectroscopy: a powerful tool Abundances + Constituents Absorption edges and lines Column densities Recent results: Ne/O ratio higher than Solar value Metals depleted: ≥ 70% into dust Oxygen depleted: 10-40% into dust Dust grains mostly made of Silicates Galactic Ionized Gas

Best Targets Best Instrument The Gratings 1) XRB GS 1826-238, 4U 1820-303, 4U 1636-536, GX 339-4, 2) Nebula: Crab 3) Nova: V2491 Cyg Best Targets Best Instrument The Gratings on board: XMM-Newton + Chandra Ne, O, Mg & Fe edges

GS 1826-238: neutral gas Absorption: Cold neutral gas → Ne, O, Mg & Fe Fitting package SPEX (Kaastra et al. 1996) Absorption: Cold neutral gas → Ne, O, Mg & Fe Continuum: (Thompson 2008) Residuals: 17.5 Å → dust 22.9 Å → dust 21.6 Å → O VII 23.3 Å → O II

GS 1826-238: ionized gas Model 2: 3-phase Gas 3 distinct phases Cold, warm and hot phases Abundances same for all phases 3 distinct phases Pure-gas not fully satisfactory Oxygen Edge COLD GAS: v ~ 10 km/s WARM GAS: v ~ 60 km/s HOT GAS: v ~ 150 km/s 103 104 105 106 T (K) NH (1021 atoms cm-2)

GS 1826-238: dust and molecules Iron Edge GS 1826-238: dust and molecules Pure-gas model doesn't work → need gas + dust !!! Our current models: - Shielding by dust grains - Structure by molecules Models in development !!! Oxygen Edge

GS 1826-238: dust and molecules Fe → shielding by grains O → CO, H20 ice, silicates .. Models in development !!! > 90 % of iron in dust 10-20 % oxygen in dust

Contributions to interstellar oxygen

Analysis extended: several sight-lines Crab nebula → Kaastra et al. (2009) Cyg X-2 → Yao et al. (2009) 4U 1820-303 → Costantini et al. (2010) GS 1826-238 → Pinto et al. (2010) I All sources → Pinto et al. (2010) II in prep. Analysis extended: several sight-lines

How is oxygen distributed ? Crab nebula → Kaastra et al. (2009) Cyg X-2 → Yao et al. (2009) 4U 1820-303 → Costantini et al. (2010) GS 1826-238 → Pinto et al. (2010) I All sources → Pinto et al. (2010) II in prep. How is oxygen distributed ? Ionized gas provides < 10 % of O-column Dust silicates provide ~ 10 – 15 %

Abundances confirm the metallicity gradient GS 1826-238 → 6-7 kpc vs. G. center 4U 1820-303 → 7-8 kpc vs. G. center All elements are over-abundant with respect to Solar composition Over-abundances almost agree Metallicity gradient

Abundances confirm the metallicity gradient Crab nebula → Kaastra (2009) Cyg X-2 → Yao (2009) 4U 1820-303 → Costantini (2010) GS 1826-238 → Pinto et al. (2010) I All sources → Pinto et al. (2010) II Average result: Abundances increase towards the center of the Galaxy But Ne doesn't show a clear change …

Conclusion and future Chemical analysis of ISM Evolutionary effects, e.g. metallicity gradient Study compounds like dust Future: ASTRO-H, IXO, Lab. data → distinguish several compounds → mapping ISM → know better the evolution of our Galaxy