Quantitative bloodstain analysis: Differentiation of contact transfer patterns versus spatter patterns on fabric via microscopic inspection  Yuen Cho,

Slides:



Advertisements
Similar presentations
G.K. German, E. Pashkovski, E.R. Dufresne  Journal of Biomechanics 
Advertisements

Illa Tea, Ingrid Antheaume, Ben-Li Zhang 
The importance of Guthrie cards and other medical samples for the direct matching of disaster victims using DNA profiling  D. Hartman, L. Benton, L. Morenos,
The ideal subject distance for passport pictures
Kelsey E. Seyfang, Kahlee E. Redman, Rachel S. Popelka-Filcoff, K
K. Alkass, B.A. Buchholz, H. Druid, K.L. Spalding 
Forensic Science International
Chemical enhancement of fingermark in blood on thermal paper
Comparison of methods for visualizing blood on dark surfaces
A modified Raman multidimensional spectroscopic signature of blood to account for the effect of laser power  Gregory McLaughlin, Igor K. Lednev  Forensic.
3D bloodstain pattern analysis: Ballistic reconstruction of the trajectories of blood drops and determination of the centres of origin of the bloodstains 
Gregory McLaughlin, Vitali Sikirzhytski, Igor K. Lednev 
Gowri Vijay Reesu, Nathan Lee Brown  Forensic Science International 
Colour contrast in ballistic gelatine
M.A. Forero Rueda, M.D. Gilchrist  Forensic Science International 
B. Rosario Campomanes-Álvarez, O. Ibáñez, F. Navarro, I. Alemán, M
Forensic Science International
Comparison of latex body paint with wetted gauze wipes for sampling the chemical warfare agents VX and sulfur mustard from common indoor surfaces  Laura.
Differential Power Analysis as a digital forensic tool
Inconsistency in 9mm bullets: Correlation of jacket thickness to post-impact geometry measured with non-destructive X-ray computed tomography  John Thornby,
Nopporn Song-im, Sarah Benson, Chris Lennard 
A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks  Kevin J. Farrugia, Joanna Fraser, Lauren Friel, Duncan.
Rory Simmons, Paul Deacon, Darren J. Phillips, Kevin Farrugia 
Daniel Attinger, Craig Moore, Adam Donaldson, Arian Jafari, Howard A
Passport examination by a confocal-type laser profile microscope
Can ⿿contamination⿿ occur in body bags
B. Szkuta, M.L. Harvey, K.N. Ballantyne, R.A.H. van Oorschot 
Exploring the relative DNA contribution of first and second object’s users on mock touch DNA mixtures  F. Oldoni, V. Castella, D. Hall  Forensic Science.
20 SNPs as supplementary markers in kinship testing
Choosing Goals, Not Rules: Deciding among Rule-Based Action Plans
Targeted multiplexed next generation RNA sequencing assay for tissue source determination of forensic samples  Erin Hanson, Sabrina Ingold, Cordula Haas,
Systematic study on the analytical parameters relevant to achieve reliable STR profiles, as assessed in a multicentre data set  G. Marrubini, C. Previderè,
Development of a RNA profiling assay for biological tissue and body fluid identification  Kevin Wai Yin Chong, Yongxun Wong, Boon Kiat Ng, Zhonghui Thong,
Initial experience in the application of the PowerQuant™ system and the Investigator® ESSplex SE QS kit for aDNA analysis  A.M. Pflugbeil, S. Groß, J.
Optic Flow Cues Guide Flight in Birds
S. Ginart, M. Caputo, D. Corach, A. Sala 
Age prediction using the novel dual sjTREC probe assay
M. Omedei, S. Gino, S. Inturri, S. Pasino, C. Robino 
C. Davies, J. Thomson, F. Kennedy 
Easy and fast procedure to isolate, purify and immortalize DNA fragments for allelic ladders construction  G. Burgos, T. Restrepo, A. Ibarra, A. Gaviria,
S. Dangsriwan, P. Thanakiatkrai, W. Asawutmangkul, S. Phetpeng, T
The development of a forensic clock to determine time of death
Timothy J. Verdon, R. John Mitchell, Roland A.H. van Oorschot 
Sequencing of the highly polymorphic STR locus SE33
Christina Valgren, Sara Wester, Oskar Hansson 
Direct amplification of STRs from blood or buccal cell samples
Optic Flow Cues Guide Flight in Birds
DNA transfer and cell type inference to assist activity level reporting: Post-activity background samples as a control in dragging scenario  Margreet.
mtDNA role in mixtures deconvolution
Skeletal reassociation from an illegal common grave of Argentina by using STR, miniSTR, and mtDNA analysis  Laura Catelli, Alicia Borosky, Carola Romanini,
Oskar Hansson, Peter Gill 
Contamination when collecting trace evidence—An issue more relevant than ever?  Ines Pickrahn, Gabriele Kreindl, Eva Müller, Bettina Dunkelmann, Waltraud.
Automated addition of Chelex solution to tubes containing trace items
A novel forensic DNA profiling technique for protected species
Volume 24, Issue 4, Pages (April 2016)
Comparison and optimization of DNA recovery from sperm vs
Is an increased drop-in rate appropriate with enhanced DNA profiling?
How degraded is our DNA? A review of single source live case work samples with optimal DNA inputs processed with the PowerPlex® ESI17 Fast kit  D. Moore,
An interstitial hypothesis for breast cancer related lymphoedema
Antoinette A. Westen, Titia Sijen 
Dnamatch2: An open source software to carry out large scale database searches of mixtures using qualitative and quantitative models  Ø. Bleka, M. Bouzga,
Dieudonné J. van der Meer, Graham A. Williams 
Colombian results of the interlaboratory quality control exercise 2015
B. Martínez, R. Pereira, K. Meza, L. Hernández, A. Amorim, J
Statistical aspects of familial searching
H. Simayijiang, V. Pereira, C. Børsting, N. Morling 
Experiences and surprises with PowerPlex ESI 17 and AmpflSTR NGM SElect in routine casework  Franz Neuhuber, Eva Klausriegler, Bettina Dunkelmann, Gabriele.
Chimerism detected in fraternal twins using ABI AmpFlSTR® Identifiler
The Perception and Misperception of Specular Surface Reflectance
Proteinase K challenged by a novel protease
Presentation transcript:

Quantitative bloodstain analysis: Differentiation of contact transfer patterns versus spatter patterns on fabric via microscopic inspection  Yuen Cho, Faye Springer, Frederic A. Tulleners, William D. Ristenpart  Forensic Science International  Volume 249, Pages 233-240 (April 2015) DOI: 10.1016/j.forsciint.2015.01.021 Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Fig. 1 (a) A schematic diagram in the Stockinette knitting pattern, as viewed from the face side of the fabric. Note that loop legs sit above the neighboring stitch, and that each row appears as a series of alternating loop leg with opposing orientation. Reproduced from reference [10]. (b) Photograph of the face side of 100% cotton plain fabric. Note that only the loop legs, of left or right orientation, are clearly visible. Red dashed lines are superimposed to guide the eye. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Fig. 2 Schematic diagram of the experimental methodology. (a) Generation of spatter pattern via direct spraying of aerosolized blood. (b) Generation of a contact transfer pattern via a two-step process: direct spraying onto a donor surface (leather or glass), and then contact transfer onto the fabric. Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Fig. 3 Representative low magnification images of (a) spatter pattern, (b) transfer pattern from leather; and (c) transfer pattern from glass. All three patterns are on 100% cotton fabric. Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Fig. 4 Representative micrographs of 100% cotton fabric showing bloodstains formed either by spatter (a, b) or contact transfer via leather (c, d) or glass (e, f). Images at right (b, d and f) are magnified images of selected areas at left. According to our definition of stained loop leg (a minimum of 75% of an individual loop leg observably stained with blood), the images in (b), (d), and (f) have 3, 8, and 9 stained left loop legs and 1, 6, and 4 right loop legs respectively. Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Fig. 5 Histograms of the number of microscopic images with specified % stained left loop legs, comparing spatter and contact transfer stains formed on two different types of fabrics, 100% cotton and 50% cotton/50% polyester. Each histogram is based on 200 microscopic images (10 replicates per condition, and 20 microscopic images per replicate). Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Fig. 6 Orientation counts of stained left loop legs in spatter and contact transfer patterns, formed on 100% cotton and 50% cotton/50% polyester, average over 10 replicate trials. The error bars represent±one standard deviation. Student's t-test was used to determine p values for the null hypothesis that the contact transfer orientation counts were statistically equivalent to the spatter orientation counts. *p<0.01, **p<0.001. Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Fig. 7 (a) Representative micrograph of the 100% cotton fabric. (b) Corresponding average height profile of the three lines shown in (a). Letters A–E denote the corresponding positions in (a). The orange dotted lines indicate±1 standard deviation. Note the left loop legs (A, C, E) protrude further out than the right loop legs (B, D) by roughly 20 to 30μm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Fig. 8 (a) Representative micrograph of the 50% cotton 50% polyester fabric. (b) Corresponding average height profile of the three lines shown in (a). Letters A–E denote the corresponding positions in (a). The orange dotted lines indicate ±1 standard deviation. Note the left loop legs (A, C, E) protrude further out than the right loop legs (B, D) by roughly 30–50μm. Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions

Forensic Science International 2015 249, 233-240DOI: (10. 1016/j Forensic Science International 2015 249, 233-240DOI: (10.1016/j.forsciint.2015.01.021) Copyright © 2015 Elsevier Ireland Ltd Terms and Conditions