Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation  P. Bernstein, C. Sticht,

Slides:



Advertisements
Similar presentations
M. M. J. Caron, P. J. Emans, M. M. E. Coolsen, L. Voss, D. A. M
Advertisements

Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Chondro-protective effects of low intensity pulsed ultrasound
Time-lapse observation of the dedifferentiation process in mouse chondrocytes using chondrocyte-specific reporters  Y. Minegishi, K. Hosokawa, N. Tsumaki 
Muscle cell-derived factors inhibit inflammatory stimuli-induced damage in hMSC- derived chondrocytes  R.S. Rainbow, H. Kwon, A.T. Foote, R.C. Preda, D.L.
L. J. Sandell, Ph. D. , X. Xing, M. D. , C. Franz, M. A. , S
M. M. J. Caron, P. J. Emans, M. M. E. Coolsen, L. Voss, D. A. M
Hypoxia reduces the inhibitory effect of IL-1β on chondrogenic differentiation of FCS- free expanded MSC  T. Felka, R. Schäfer, B. Schewe, K. Benz, W.K.
Mesenchymal stromal cells for cartilage repair in osteoarthritis
Z. Zhang, Y. Kang, Z. Zhang, H. Zhang, X. Duan, J. Liu, X. Li, W. Liao 
Human articular chondrocytes with higher aldehyde dehydrogenase activity have stronger expression of COL2A1 and SOX9  A. Unguryte, E. Bernotiene, E. Bagdonas,
Subtractive gene expression profiling of articular cartilage and mesenchymal stem cells: serpins as cartilage-relevant differentiation markers  S. Boeuf,
H. Bretschneider, M. Stiehler, A. Hartmann, E. Boger, C. Osswald, J
Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs  M.J. Farrell, J.I. Shin, L.J.
Restriction of spontaneous and prednisolone-induced leptin production to dedifferentiated state in human hip OA chondrocytes: role of Smad1 and β-catenin.
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
MicroRNA-320 regulates matrix metalloproteinase-13 expression in chondrogenesis and interleukin-1β-induced chondrocyte responses  F. Meng, Z. Zhang, W.
Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro  L. Rackwitz, F. Djouad, S.
P. -J. Francin, A. Abot, C. Guillaume, D. Moulin, A. Bianchi, P
Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture  Dr R.L. Mauck, Ph.D., X. Yuan, Dr.
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-ß3 on cell recruitment and re-differentiation  U. Freymann, M. Endres,
Comparative analysis with collagen type II distinguishes cartilage oligomeric matrix protein as a primary TGFβ-responsive gene  H. Li, D.R. Haudenschild,
Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix  A. Gigout, H. Guehring, D. Froemel, A. Meurer, C. Ladel,
Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation  A.
H.H. Lee, M.J. O'Malley, N.A. Friel, C.R. Chu 
Reduced chondrocyte proliferation, earlier cell cycle exit and increased apoptosis in neuronal nitric oxide synthase-deficient mice  Q. Yan, Q. Feng,
Human synovial fluid derived mesenchymal stem cells expanded under low oxygen conditions and in a serum-free environment exhibit enhanced lineage-specific.
Transcription factor SPB-x is a key molecule inducing hypertrophy of differentiated chondrocyte from MSC  G.-I. Im, J.-M. Lee, J.-M. Ahn, E.-A. Kim  Osteoarthritis.
Involvement of Gas7 along the ERK1/2 MAP kinase and SOX9 pathway in chondrogenesis of human marrow-derived mesenchymal stem cells  Y. Chang, M.D., S.W.N.
Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage  Y. Yu, H. Zheng, J.A. Buckwalter, J.A. Martin 
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis.
Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes  Simon R.
J.E. Jeon, K. Schrobback, D.W. Hutmacher, T.J. Klein 
Low calcium levels in serum-free media maintain chondrocyte phenotype in monolayer culture and reduce chondrocyte aggregation in suspension culture  A.
A predominantly articular cartilage-associated gene, SCRG1, is induced by glucocorticoid and stimulates chondrogenesis in vitro  Kensuke Ochi, M.D., Ph.D.,
Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins  M. Pei, M.D., Ph.D., J. Luo, M.D.,
M. M. J. Caron, P. J. Emans, M. M. E. Coolsen, L. Voss, D. A. M
Osteoarthritis and Cartilage
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes  A. Marsano, M.Sc., S.J. Millward-Sadler,
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
T. Kurth, M. Sc. , E. Hedbom, Ph. D. , N. Shintani, Ph. D. , M
M. A. Cleary, R. Narcisi, K. Focke, R. van der Linden, P. A. J
Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications 
J. Ranstam  Osteoarthritis and Cartilage 
S.D. Waldman, J. Usprech, L.E. Flynn, A.A. Khan 
Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors.
Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model  Carsten Lübke, Ph.D., Jochen Ringe, M.Sc., Veit.
Microarray analysis of differential gene expression in temporomandibular joint condylar cartilage after experimentally induced osteoarthritis  Juanhong.
Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins  M. Shimaya, T. Muneta, S. Ichinose, K. Tsuji,
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration  S. Ashraf, B.-H. Cha, J.-S. Kim, J. Ahn, I.
Development of growth factor tethered hyaluronan microspheres for in situ chondrogenic differentiation of human mesenchymal stem cells  S. Ansboro, J.S.
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Chondroitin sulfate modulation of matrix and inflammatory gene expression in IL-1β- stimulated chondrocytes – study in hypoxic alginate bead cultures 
Y. M. Bastiaansen-Jenniskens, M. Sc. , W. Koevoet, B. Sc. , A. C. W
Identification of molecular markers for articular cartilage
A peptide temporally enhanced chondrogenesis of mesenchymal stem cells
Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress  Shuitsu Maeda, M.D., Jun Nishida,
Novel juvenile factors for cartilage regeneration
Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro  C. Co, M.K.
R. H. J. Das, M. Sc. , H. Jahr, Ph. D. , J. A. N. Verhaar, M. D. , Ph
Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes1 1 Supported by IsoTis S.A.  J. Malda, Ph.D., C.A.
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
Chondro-protective effects of low intensity pulsed ultrasound
Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy  M.E. Cooke,
Effect of expansion medium on ex vivo gene transfer and chondrogenesis in type II collagen–glycosaminoglycan scaffolds in vitro  R.M. Capito, Ph.D., M.
Presentation transcript:

Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation  P. Bernstein, C. Sticht, A. Jacobi, C. Liebers, S. Manthey, M. Stiehler  Osteoarthritis and Cartilage  Volume 18, Issue 12, Pages 1596-1607 (December 2010) DOI: 10.1016/j.joca.2010.09.007 Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Data analysis pathway, depicting the three major steps of the analysis process. (1): microarray-screening and filtering through paths A and B by comparing gene expression trends, resulting in gene list 1; (2): hypothesis-driven selection of biological relevant genes, resulting in gene list 2; (3): validation by quantitative RT-PCR. Osteoarthritis and Cartilage 2010 18, 1596-1607DOI: (10.1016/j.joca.2010.09.007) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Immunohistological staining of chondrocyte (A, C, E, G) and MSC pellets (B, D, F, H) reveals sufficient Sox9-expression (A, B) and only limited intranuclear retention in MSC (B). Collagen I is produced on a low level in both cell types (C, D). Collagen II is highly upregulated in chondrocytes (E) as opposed to MSCs (F). Both cell types show an upregulated expression of collagen X (G, H). Sections are representative for larger areas of the specimen. Scale bars=20μm. Osteoarthritis and Cartilage 2010 18, 1596-1607DOI: (10.1016/j.joca.2010.09.007) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Multivariate correlation matrix of genetic expression similarity between chondrocytes and MSCs compared with the monolayer startpoint (day 0) during pellet cultivation until day 14. Line A: Similarity between chondrocytes and MSCs; line B: similarity between dedifferentiated day-0 chondrocytes and pellet-cultured MSCs; line C: similarity between day-0 MSCs and pellet-cultured chondrocytes. Osteoarthritis and Cartilage 2010 18, 1596-1607DOI: (10.1016/j.joca.2010.09.007) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Trend-distribution matrix showing the final difference in gene expression between day 14 and day 3 (dynamics) of selected genes from gene list 1 from chondrocytes and MSCs, cultivated as pellets. A dynamic value>0 represents an increasing expression. Osteoarthritis and Cartilage 2010 18, 1596-1607DOI: (10.1016/j.joca.2010.09.007) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Results of quantitative RT-PCR validation of gene expression differences between chondrocytes and MSC in the first and second week of PC in TGFβ− and TGFβ+ culture conditions (n=6 patients, see material part). P-values of significant differences are indicated above the bars. Error bars show 95% confidence interval. Osteoarthritis and Cartilage 2010 18, 1596-1607DOI: (10.1016/j.joca.2010.09.007) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions